This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A347913 #128 Jun 05 2022 13:19:25 %S A347913 1,1,2,2,7,9,29,47,144,264,747,1531,4147,9063,23744,54522,140223, %T A347913 332033,845111,2045007,5176880,12713772,32115727,79676437,201227865, %U A347913 502852973 %N A347913 a(n) is the number of multisets of integers that are possible to reach by starting with n occurrences of 0 and by splitting. Splitting is taking 2 occurrences of the same integer and incrementing one of them by 1 and decrementing the other occurrence by 1. %C A347913 If the limit of a(n+1)/a(n) exists, then it is contained in the closed interval [2,6.75]. See Links for proof. Reverse splitting is defined in A348532. %H A347913 Tejo Vrush, <a href="/A347913/a347913_3.pdf">Limiting ratio for consecutive terms (Upper bound)</a> %H A347913 Tejo Vrush, <a href="/A347913/a347913_8.pdf">Limiting ratio for consecutive terms (Lower bound)</a> %e A347913 For n = 5, the multisets are as follows: %e A347913 {{0,0,0,0,0}} {{-1,0,0,0,1}} {{-1,-1,0,1,1}} %e A347913 {{-1,-1,0,0,2}} {{-1,-1,-1,1,2}} {{-2,0,0,1,1}} %e A347913 {{-2,0,0,0,2}} {{-2,-1,1,1,1}} {{-2,-1,0,1,2}} %e A347913 Therefore, a(5) = 9. %e A347913 For n = 6, the multisets are as follows: %e A347913 {{0,0,0,0,0,0}} {{-1,0,0,0,0,1}} {{-1,-1,0,0,1,1}} %e A347913 {{-1,-1,0,0,0,2}} {{-1,-1,-1,1,1,1}} {{-1,-1,-1,0,1,2}} %e A347913 {{-2,0,0,0,1,1}} {{-2,0,0,0,0,2}} {{-2,-1,0,1,1,1}} %e A347913 {{-2,-1,0,0,1,2}} {{-2,-1,-1,1,1,2}} {{-2,-1,-1,0,2,2}} %e A347913 {{-2,-1,-1,0,1,3}} {{-2,-2,0,1,1,2}} {{-2,-2,0,0,2,2}} %e A347913 {{-2,-2,0,0,1,3}} {{-2,-2,-1,1,2,2}} {{-2,-2,-1,1,1,3}} %e A347913 {{-2,-2,-1,0,2,3}} {{-3,-1,0,1,1,2}} {{-3,-1,0,0,2,2}} %e A347913 {{-3,-1,0,0,1,3}} {{-3,-1,-1,1,2,2}} {{-3,-1,-1,1,1,3}} %e A347913 {{-3,-1,-1,0,2,3}} {{-3,-2,0,1,2,2}} {{-3,-2,0,1,1,3}} %e A347913 {{-3,-2,0,0,2,3}} {{-3,-2,-1,1,2,3}} %e A347913 Therefore, a(6) = 29. %p A347913 b:= proc(p) option remember; {p, seq(`if`(coeff(p, x, i)>1, %p A347913 b(expand((p-2*x^i+x^(i-1)+x^(i+1))*`if`(i=0, x, 1) %p A347913 )), [])[], i=0..degree(p))} %p A347913 end: %p A347913 a:= n-> nops(b(n)): %p A347913 seq(a(n), n=0..10); # _Alois P. Heinz_, Oct 07 2021 %t A347913 b[p_] := b[p] = Union@Flatten@Join[{p}, Table[If[Coefficient[p, x, i] > 1, b[Expand[(p - 2*x^i + x^(i - 1) + x^(i + 1))*If[i == 0, x, 1]]]], {i, 0, Exponent[p, x]}]]; %t A347913 a[n_] := If[n == 0, 1, Length[b[n]] - 1]; %t A347913 Table[Print[n, " ", a[n]]; a[n], {n, 0, 14}] (* _Jean-François Alcover_, Jun 04 2022, after _Alois P. Heinz_ *) %o A347913 (Python) %o A347913 def nextq(q): %o A347913 used = set() %o A347913 for i in range(len(q)-1): %o A347913 for j in range(i+1, len(q)): %o A347913 if q[i] == q[j]: %o A347913 if q[i] in used: continue %o A347913 used.add(q[i]) %o A347913 qc = list(q); qc[i] -= 1; qc[j] += 1 %o A347913 yield tuple(sorted(qc)) %o A347913 def a(n): %o A347913 s = tuple(0 for i in range(n)); reach = {s}; expand = list(reach) %o A347913 while len(expand) > 0: %o A347913 q = expand.pop() %o A347913 for qq in nextq(q): %o A347913 if qq not in reach: %o A347913 reach.add(qq) %o A347913 if len(set(qq)) < len(qq): %o A347913 expand.append(qq) %o A347913 return len(reach) %o A347913 print([a(n) for n in range(17)]) # _Michael S. Branicky_, Oct 10 2021 %Y A347913 Cf. A348532. %K A347913 nonn,more %O A347913 0,3 %A A347913 _Tejo Vrush_, Oct 07 2021 %E A347913 a(15)-a(22) from _David A. Corneth_, Oct 08 2021 %E A347913 a(23)-a(25) from _Michael S. Branicky_, Oct 12 2021