cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347913 a(n) is the number of multisets of integers that are possible to reach by starting with n occurrences of 0 and by splitting. Splitting is taking 2 occurrences of the same integer and incrementing one of them by 1 and decrementing the other occurrence by 1.

This page as a plain text file.
%I A347913 #128 Jun 05 2022 13:19:25
%S A347913 1,1,2,2,7,9,29,47,144,264,747,1531,4147,9063,23744,54522,140223,
%T A347913 332033,845111,2045007,5176880,12713772,32115727,79676437,201227865,
%U A347913 502852973
%N A347913 a(n) is the number of multisets of integers that are possible to reach by starting with n occurrences of 0 and by splitting. Splitting is taking 2 occurrences of the same integer and incrementing one of them by 1 and decrementing the other occurrence by 1.
%C A347913 If the limit of a(n+1)/a(n) exists, then it is contained in the closed interval [2,6.75]. See Links for proof. Reverse splitting is defined in A348532.
%H A347913 Tejo Vrush, <a href="/A347913/a347913_3.pdf">Limiting ratio for consecutive terms (Upper bound)</a>
%H A347913 Tejo Vrush, <a href="/A347913/a347913_8.pdf">Limiting ratio for consecutive terms (Lower bound)</a>
%e A347913 For n = 5, the multisets are as follows:
%e A347913   {{0,0,0,0,0}}   {{-1,0,0,0,1}}   {{-1,-1,0,1,1}}
%e A347913   {{-1,-1,0,0,2}} {{-1,-1,-1,1,2}} {{-2,0,0,1,1}}
%e A347913   {{-2,0,0,0,2}}  {{-2,-1,1,1,1}}  {{-2,-1,0,1,2}}
%e A347913 Therefore, a(5) = 9.
%e A347913 For n = 6, the multisets are as follows:
%e A347913   {{0,0,0,0,0,0}}    {{-1,0,0,0,0,1}}   {{-1,-1,0,0,1,1}}
%e A347913   {{-1,-1,0,0,0,2}}  {{-1,-1,-1,1,1,1}} {{-1,-1,-1,0,1,2}}
%e A347913   {{-2,0,0,0,1,1}}   {{-2,0,0,0,0,2}}   {{-2,-1,0,1,1,1}}
%e A347913   {{-2,-1,0,0,1,2}}  {{-2,-1,-1,1,1,2}} {{-2,-1,-1,0,2,2}}
%e A347913   {{-2,-1,-1,0,1,3}} {{-2,-2,0,1,1,2}}  {{-2,-2,0,0,2,2}}
%e A347913   {{-2,-2,0,0,1,3}}  {{-2,-2,-1,1,2,2}} {{-2,-2,-1,1,1,3}}
%e A347913   {{-2,-2,-1,0,2,3}} {{-3,-1,0,1,1,2}}  {{-3,-1,0,0,2,2}}
%e A347913   {{-3,-1,0,0,1,3}}  {{-3,-1,-1,1,2,2}} {{-3,-1,-1,1,1,3}}
%e A347913   {{-3,-1,-1,0,2,3}} {{-3,-2,0,1,2,2}}  {{-3,-2,0,1,1,3}}
%e A347913   {{-3,-2,0,0,2,3}}  {{-3,-2,-1,1,2,3}}
%e A347913 Therefore, a(6) = 29.
%p A347913 b:= proc(p) option remember; {p, seq(`if`(coeff(p, x, i)>1,
%p A347913       b(expand((p-2*x^i+x^(i-1)+x^(i+1))*`if`(i=0, x, 1)
%p A347913                )), [])[], i=0..degree(p))}
%p A347913     end:
%p A347913 a:= n-> nops(b(n)):
%p A347913 seq(a(n), n=0..10);  # _Alois P. Heinz_, Oct 07 2021
%t A347913 b[p_] := b[p] = Union@Flatten@Join[{p}, Table[If[Coefficient[p, x, i] > 1, b[Expand[(p - 2*x^i + x^(i - 1) + x^(i + 1))*If[i == 0, x, 1]]]], {i, 0, Exponent[p, x]}]];
%t A347913 a[n_] := If[n == 0, 1, Length[b[n]] - 1];
%t A347913 Table[Print[n, " ", a[n]]; a[n], {n, 0, 14}] (* _Jean-François Alcover_, Jun 04 2022, after _Alois P. Heinz_ *)
%o A347913 (Python)
%o A347913 def nextq(q):
%o A347913     used = set()
%o A347913     for i in range(len(q)-1):
%o A347913         for j in range(i+1, len(q)):
%o A347913             if q[i] == q[j]:
%o A347913                 if q[i] in used: continue
%o A347913                 used.add(q[i])
%o A347913                 qc = list(q); qc[i] -= 1; qc[j] += 1
%o A347913                 yield tuple(sorted(qc))
%o A347913 def a(n):
%o A347913     s = tuple(0 for i in range(n)); reach = {s}; expand = list(reach)
%o A347913     while len(expand) > 0:
%o A347913         q = expand.pop()
%o A347913         for qq in nextq(q):
%o A347913             if qq not in reach:
%o A347913                 reach.add(qq)
%o A347913                 if len(set(qq)) < len(qq):
%o A347913                     expand.append(qq)
%o A347913     return len(reach)
%o A347913 print([a(n) for n in range(17)]) # _Michael S. Branicky_, Oct 10 2021
%Y A347913 Cf. A348532.
%K A347913 nonn,more
%O A347913 0,3
%A A347913 _Tejo Vrush_, Oct 07 2021
%E A347913 a(15)-a(22) from _David A. Corneth_, Oct 08 2021
%E A347913 a(23)-a(25) from _Michael S. Branicky_, Oct 12 2021