cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347927 a(n) is the number of reduced Latin trapezoids of height 3, whose top row has n boxes, the middle row has n+1 boxes, and the bottom row has n+2 boxes.

This page as a plain text file.
%I A347927 #14 Oct 23 2021 17:37:07
%S A347927 1,6,68,1670,67295,3825722,285667270,26889145828,3102187523467,
%T A347927 429700007845870,70303573947346474,13405343287124139802,
%U A347927 2945521072579394529097,738633749151050116349946,209620243382776121032416188,66830750007674204750148252472,23780886787936166425634118631117
%N A347927 a(n) is the number of reduced Latin trapezoids of height 3, whose top row has n boxes, the middle row has n+1 boxes, and the bottom row has n+2 boxes.
%H A347927 Peter Luschny, <a href="/A347927/b347927.txt">Table of n, a(n) for n = 1..100</a>. Data from George Spahn and Doron Zeilberger, see link.
%H A347927 George Spahn and Doron Zeilberger, <a href="http://ecajournal.haifa.ac.il/Volume2022/ECA2022_S2A8.pdf">Automatic Counting of Generalized Latin Rectangles and Trapezoids</a>, Enumerative Combinatorics and Applications, 2:1 (2022).
%H A347927 George Spahn and Doron Zeilberger, <a href="https://sites.math.rutgers.edu/~zeilberg/tokhniot/oLatinTrapezoids1.txt">Latin trapezoids with three rows</a>, the first 100 terms.
%H A347927 George Spahn and Doron Zeilberger, <a href="https://sites.math.rutgers.edu/~zeilberg/tokhniot/LatinTrapezoids.txt">Latin trapezoids</a>, a Maple package.
%e A347927 There are 6 reduced Latin trapezoids of height 3 with base of length 4:
%e A347927 ----------------------------------------------
%e A347927     2, 3;       |    4, 3;       |    2, 3;
%e A347927    3, 1, 2;     |   3, 1, 2;     |   3, 4, 1;
%e A347927   1, 2, 3, 4;   |  1, 2, 3, 4;   |  1, 2, 3, 4;
%e A347927 -----------------------------------------------
%e A347927     2, 1;       |    2, 3;       |    2, 3;
%e A347927    3, 4, 2;     |   3, 4, 2;     |   4, 1, 2;
%e A347927   1, 2, 3, 4;   |  1, 2, 3, 4;   |  1, 2, 3, 4;
%e A347927 -----------------------------------------------
%Y A347927 Cf. A002860 (Latin squares), A000186, A001623, A001626.
%K A347927 nonn
%O A347927 1,2
%A A347927 _Peter Luschny_, Oct 22 2021