This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A347927 #14 Oct 23 2021 17:37:07 %S A347927 1,6,68,1670,67295,3825722,285667270,26889145828,3102187523467, %T A347927 429700007845870,70303573947346474,13405343287124139802, %U A347927 2945521072579394529097,738633749151050116349946,209620243382776121032416188,66830750007674204750148252472,23780886787936166425634118631117 %N A347927 a(n) is the number of reduced Latin trapezoids of height 3, whose top row has n boxes, the middle row has n+1 boxes, and the bottom row has n+2 boxes. %H A347927 Peter Luschny, <a href="/A347927/b347927.txt">Table of n, a(n) for n = 1..100</a>. Data from George Spahn and Doron Zeilberger, see link. %H A347927 George Spahn and Doron Zeilberger, <a href="http://ecajournal.haifa.ac.il/Volume2022/ECA2022_S2A8.pdf">Automatic Counting of Generalized Latin Rectangles and Trapezoids</a>, Enumerative Combinatorics and Applications, 2:1 (2022). %H A347927 George Spahn and Doron Zeilberger, <a href="https://sites.math.rutgers.edu/~zeilberg/tokhniot/oLatinTrapezoids1.txt">Latin trapezoids with three rows</a>, the first 100 terms. %H A347927 George Spahn and Doron Zeilberger, <a href="https://sites.math.rutgers.edu/~zeilberg/tokhniot/LatinTrapezoids.txt">Latin trapezoids</a>, a Maple package. %e A347927 There are 6 reduced Latin trapezoids of height 3 with base of length 4: %e A347927 ---------------------------------------------- %e A347927 2, 3; | 4, 3; | 2, 3; %e A347927 3, 1, 2; | 3, 1, 2; | 3, 4, 1; %e A347927 1, 2, 3, 4; | 1, 2, 3, 4; | 1, 2, 3, 4; %e A347927 ----------------------------------------------- %e A347927 2, 1; | 2, 3; | 2, 3; %e A347927 3, 4, 2; | 3, 4, 2; | 4, 1, 2; %e A347927 1, 2, 3, 4; | 1, 2, 3, 4; | 1, 2, 3, 4; %e A347927 ----------------------------------------------- %Y A347927 Cf. A002860 (Latin squares), A000186, A001623, A001626. %K A347927 nonn %O A347927 1,2 %A A347927 _Peter Luschny_, Oct 22 2021