cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347928 Triangle read by rows, T(n, k) are the coefficients of the scaled Mandelbrot-Larsen polynomials P(n, x) = 2^(2*n-1)*M(n, x), where M(n, x) are the Mandelbrot-Larsen polynomials; for 0 <= k <= n.

This page as a plain text file.
%I A347928 #24 Jul 07 2022 05:16:56
%S A347928 0,0,1,0,2,1,0,0,4,2,0,16,12,12,5,0,0,32,40,40,14,0,0,192,208,168,140,
%T A347928 42,0,0,0,640,800,720,504,132,0,2048,1792,2688,3920,3584,3080,1848,
%U A347928 429,0,0,4096,4608,11520,17760,16512,13104,6864,1430
%N A347928 Triangle read by rows, T(n, k) are the coefficients of the scaled Mandelbrot-Larsen polynomials P(n, x) = 2^(2*n-1)*M(n, x), where M(n, x) are the Mandelbrot-Larsen polynomials; for 0 <= k <= n.
%C A347928 To avoid confusion: the polynomials which are called 'Mandelbrot polynomials' by some authors are listed in A137560. The name 'Mandelbrot-Larsen' polynomials was introduced in Calkin, Chan, & Corless to distinguish them from the Mandelbrot polynomials.
%H A347928 Neil J. Calkin, Eunice Y. S. Chan, and Robert M. Corless, <a href="https://doi.org/10.5206/mt.v1i1.14037">Some Facts and Conjectures about Mandelbrot Polynomials</a>, Maple Trans., Vol. 1, No. 1, Article 14037 (July 2021).
%H A347928 V. P. Johnson, <a href="http://people.math.sc.edu/czabarka/Theses/JohnsonThesis.pdf">Enumeration Results on Leaf Labeled Trees</a>, Ph. D. Dissertation, Univ. Southern Calif., 2012.
%H A347928 Michael Larsen, <a href="https://doi.org/10.1090/mcom/3564">Multiplicative series, modular forms, and Mandelbrot polynomials</a>, in: Mathematics of Computation 90.327 (Sept. 2020), pp. 345-377. Preprint: <a href="https://arxiv.org/abs/1908.09974">arXiv:1908.09974</a> [math.NT], 2019.
%F A347928 The Mandelbrot-Larsen polynomials are defined: M(0, x) = 0; M(1, x) = x/2;
%F A347928 M(n, x) = (1/2)*(even(n)*M(n/2, x) + Sum_{k=1..n-1} M(k, x)*M(n-k, x)) for n > 1. Here even(n) = 1 if n is even, otherwise 0.
%F A347928 P(n, x) = 2^(2*n-1)*M(n, x) (scaled Mandelbrot-Larsen polynomials).
%F A347928 T(n, k) = [x^k] P(n, x).
%F A347928 [x^k] M(n,k) = A348679(n, k) / A348678(n, k).
%F A347928 M(n, 2*k) = P(n, 2*k) / 2^(2*n-1) = A319539(n, k).
%F A347928 P(n, k) = A348686(n, k).
%F A347928 T(n, n) = A000108(n-1) for n >= 1, Catalan numbers.
%F A347928 T(n+2, n+1) / 2 = A000984(n) for n >= 0, central binomials.
%F A347928 P(n, 1) = A088674(n-1) for n >= 1, also row sums.
%F A347928 M(n, 2) = A001190(n) for n >= 0.
%F A347928 M(n, 4) = A083563(n) for n >= 0.
%F A347928 M(n,-4) = -A107087(n) for n >= 1.
%F A347928 M(n, 6) = A220816(n) for n >= 1.
%F A347928 M(n, 8) = A220817(n) for n >= 1.
%F A347928 Conjecture (Calkin, Chan, & Corless): content(P(n)) = gcd(row(n)) = A048896(n-1) for n >= 1.
%e A347928 Triangle starts:
%e A347928 [0]  0;
%e A347928 [1]  0,    1;
%e A347928 [2]  0,    2,    1;
%e A347928 [3]  0,    0,    4,    2;
%e A347928 [4]  0,   16,   12,   12,     5;
%e A347928 [5]  0,    0,   32,   40,    40,    14;
%e A347928 [6]  0,    0,  192,  208,   168,   140,    42;
%e A347928 [7]  0,    0,    0,  640,   800,   720,   504,   132;
%e A347928 [8]  0, 2048, 1792, 2688,  3920,  3584,  3080,  1848,  429;
%e A347928 [9]  0,    0, 4096, 4608, 11520, 17760, 16512, 13104, 6864, 1430.
%p A347928 M := proc(n, x) local k; option remember;
%p A347928 if n = 0 then 0 elif n = 1 then x else add(M(k, x)*M(n-k, x), k = 1..n-1) +
%p A347928 ifelse(n::even, M(n/2, x), 0) fi; expand(%/2) end:
%p A347928 P := n -> 2^(2*n - 1)*M(n, x):
%p A347928 row := n -> seq(coeff(P(n), x, k), k = 0..n): seq(row(n), n = 0..9);
%t A347928 M[n_, x_] := M[n, x] = Module[{k, w}, w = Which[n == 0, 0, n == 1, x, True, Sum[M[k, x]*M[n-k, x], {k, 1, n-1}] + If[EvenQ[n], M[n/2, x], 0]]; Expand[w/2]];
%t A347928 P[n_] := 2^(2*n - 1)*M[n, x];
%t A347928 row [n_] := If[n == 0, {0}, CoefficientList[P[n], x]];
%t A347928 Table[row[n], {n, 0, 9}] // Flatten (* _Jean-François Alcover_, Jul 07 2022, after Maple code *)
%Y A347928 Cf. A137560, A000108, A000984, A001190, A083563, A088674, A048896, A107087, A220816, A220817.
%Y A347928 Cf. A319539, A348678, A348679, A348686.
%K A347928 nonn,tabl
%O A347928 0,5
%A A347928 _Peter Luschny_, Oct 27 2021