This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A347929 #10 Sep 19 2021 13:04:21 %S A347929 1,1,1,2,0,6,12,12,96,108,240,380,0,28428,8176,16200,387072,2817324, %T A347929 6065280,4604796,56832000,14574168,2092107072,13994428360,8725045248, %U A347929 162749055000,1304167707648,3291435901044,17899142381568,107056050266172 %N A347929 a(n) = 2^(-1 + (n + n mod 2)/2)*abs(permanent(M_n)) where M_n is the n X n matrix M_n(j, k) = cos(Pi*j*k/n) if n >= 1 and a(0) = 1. %H A347929 Zhi-Wei Sun, Fedor Petrov, <a href="https://mathoverflow.net/questions/321098/">A surprising identity</a>, discussion in MathOverflow, Jan 17 2019. %H A347929 Zhi-Wei Sun, <a href="https://arxiv.org/abs/1901.04837">On some determinants involving the tangent function</a>, arXiv:1901.04837 [math.NT], 2021. %e A347929 a(6) = 16*cos^4(Pi/8) + 8*cos^2(Pi/8) - 64*cos^2(Pi*3/8)*cos^2(Pi/8) + 8*cos^2(Pi*3/8) + 16*cos^4(Pi*3/8). %o A347929 (SageMath) %o A347929 def A347929(n): %o A347929 if n == 0: return 1 %o A347929 RF = RealField(100) # adjust precision if needed %o A347929 M = matrix(RF, n, n, lambda j, k: cos(j * k * pi / n)) %o A347929 c = 2^(-1 + (n + n % 2) // 2) %o A347929 return abs(round(c*M.permanent())) %o A347929 print([A347929(n) for n in range(12)]) %o A347929 (PARI) %o A347929 p(n) = matpermanent(matrix(n, n, j, k, cos((Pi*j*k)/n))); %o A347929 A347929(n) = abs(round(2^(-1 + (n + n %2)/2)*p(n))); %o A347929 {for(n = 0, 12, print(A347929(n)))} %Y A347929 Cf. A347281. %K A347929 nonn %O A347929 0,4 %A A347929 _Peter Luschny_, Sep 19 2021