This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A347930 #13 Sep 20 2021 09:40:07 %S A347930 1,1,3,16,88,625,5527,55760,640540,8329326,120212331,1905939913, %T A347930 32987637967,618591571085,12489644875037,270193806214360, %U A347930 6235154917414954,152875655211527878,3968729594485785289,108754865309750398187,3137052120203959610759 %N A347930 3-Springer numbers. %C A347930 a(n) is also the volume of a certain flow polytope. %H A347930 Arvind Ayyer, Matthieu Josuat-Vergès, and Sanjay Ramassamy, <a href="https://doi.org/10.5802/ahl.33">Extensions of partial cyclic orders and consecutive coordinate polytopes</a>, Ann. H. Lebesgue, 3 (2020), 275-297. %H A347930 R. S. Gonzalez D'Leon, A. H. Morales, C. R. H. Hanusa, and M. Yip, <a href="https://arxiv.org/abs/2107.07326">Column convex matrices, G-cyclic orders, and flow polytopes</a>, arXiv:2107.07326 [math.CO], 2021. %H A347930 S. Ramassamy, <a href="https://doi.org/10.37236/7145">Extensions of partial cyclic orders, Euler numbers and multidimensional boustrophedons</a>, Electron. J. Combin., 25 (2018), #P1.66. %F A347930 a(n) = Sum_{(x,y,z), x+y+z=n-2} ((n-2)!/(x!*y!*z!))*b(x,y,z), where b(x,y,z) are the 3-Entringer numbers defined by Ramassamy. %p A347930 wcomps:=proc(n,k) %p A347930 option remember; %p A347930 local ocomps,ncomps,i; %p A347930 ocomps:=combinat:-composition(n+k,k); %p A347930 ncomps:={}; %p A347930 for i from 1 to nops(ocomps) do %p A347930 ncomps:=ncomps union{[seq(ocomps[i][j]-1,j=1..k)]}; %p A347930 end do; %p A347930 return [op(ncomps)]; %p A347930 end proc: %p A347930 b:=proc(s) option remember; %p A347930 local k; %p A347930 k := nops(s); %p A347930 if s = [seq(0,i=1..k)] then %p A347930 return(1); %p A347930 elif s[1]>0 then %p A347930 return(add(b([s[2]+j,op(s[3..k]),s[1]-j-1]),j=0..s[1]-1)); %p A347930 else %p A347930 return(0); %p A347930 end if; %p A347930 end proc:a:=proc(n) local N,S: N := n-2; S := wcomps(N,3); return add(combinat:-multinomial(N,op(s))*b(s), s in S);end proc:seq(a(n),n=2..10); %Y A347930 Cf. A001586, A008282, A000111. %K A347930 nonn %O A347930 2,3 %A A347930 _Alejandro H. Morales_, Sep 19 2021