This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A347936 #11 Sep 20 2021 18:29:39 %S A347936 155925,225225,259875,294525,297675,363825,405405,429975,467775, %T A347936 496125,552825,562275,571725,606375,628425,675675,694575,760725, %U A347936 765765,779625,883575,893025,921375,945945,987525,1044225,1091475,1126125,1167075,1195425,1216215,1289925 %N A347936 Odd numbers k such that A187795(k) > 2*k. %C A347936 The numbers of terms not exceeding 10^k for k = 6, 7, ... are 25, 352, 3281, 33291, 336686, ... Apparently, this sequence has an asymptotic density 0.000033... %C A347936 Apparently, the least term that is not divisible by 3 is 836504377583875. %H A347936 Amiram Eldar, <a href="/A347936/b347936.txt">Table of n, a(n) for n = 1..10000</a> %e A347936 The divisors of 155925 that are abundant numbers are {945, 1575, 2835, 3465, 4725, 5775, 7425, 10395, 14175, 17325, 22275, 31185, 51975, 155925}. Their sum is 330000 > 2*155925 = 311850. Therefore, 155925 is a term. %t A347936 abQ[n_] := DivisorSigma[1, n] > 2*n; s[n_] := DivisorSum[n, # &, abQ[#] &]; q[n_] := s[n] > 2*n; Select[Range[1, 1000000, 2], q] %o A347936 (PARI) isok(k) = (k%2) && sumdiv(k, d, if (sigma(d)>=2*d, d)) > 2*k; \\ _Michel Marcus_, Sep 20 2021 %Y A347936 The odd terms of A347935. %Y A347936 Subsequence of A005101 and A005231. %Y A347936 Cf. A187795. %K A347936 nonn %O A347936 1,1 %A A347936 _Amiram Eldar_, Sep 20 2021