cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347968 Decimal expansion of the solution to Product_{k>=1} (1 - x^k) = x.

This page as a plain text file.
%I A347968 #22 Dec 01 2022 17:27:39
%S A347968 4,1,9,6,0,0,3,5,2,5,9,8,3,5,6,4,7,8,4,9,8,7,7,5,7,5,3,5,6,6,7,0,0,0,
%T A347968 2,5,3,1,8,0,8,9,3,6,3,1,2,0,0,1,6,0,7,8,0,4,4,1,6,8,1,3,6,1,6,7,7,6,
%U A347968 0,7,8,4,9,3,2,0,5,9,8,0,7,8,0,9,3,8,8,9,8,3,0,2,7,7,7,1,5,4,9,9,8,7,5,1,1,7,1,7,8,3,8,6,0,7,5,4,3,7,5,8
%N A347968 Decimal expansion of the solution to Product_{k>=1} (1 - x^k) = x.
%C A347968 Fixed point of Euler function. - _Michal Paulovic_, Oct 16 2022
%e A347968 0.41960035259835647849877575356670002531808936312...
%t A347968 RealDigits[x /. FindRoot[QPochhammer[x] == x, {x, 1/2}, WorkingPrecision -> 120]][[1]] (* _Vaclav Kotesovec_, Sep 21 2021 *)
%o A347968 (PARI) solve(x=0, 1, prodinf(k=1,1-x^k) - x) \\ _Michel Marcus_, Sep 21 2021
%o A347968 (PARI) solve(x=0.4, 0.5, eta(log(x)/(2*Pi*I)) - x) \\ _Michal Paulovic_, Oct 16 2022
%Y A347968 Cf. A010815, A067687, A206119.
%K A347968 nonn,cons
%O A347968 0,1
%A A347968 _Ilya Gutkovskiy_, Sep 21 2021