cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347970 Triangle read by rows: T(n, k) is the number of k-dimensional subspaces in (F_3)^n, counted up to coordinate permutation (n >= 0, 0 <= k <= n).

This page as a plain text file.
%I A347970 #13 Oct 03 2021 19:25:16
%S A347970 1,1,1,1,3,1,1,5,5,1,1,8,16,8,1,1,11,39,39,11,1,1,15,87,168,87,15,1,1,
%T A347970 19,176,644,644,176,19,1,1,24,338,2348,4849,2348,338,24,1,1,29,613,
%U A347970 8137,37159,37159,8137,613,29,1,1,35,1071,27047,286747,679054,286747,27047,1071
%N A347970 Triangle read by rows: T(n, k) is the number of k-dimensional subspaces in (F_3)^n, counted up to coordinate permutation (n >= 0, 0 <= k <= n).
%C A347970 Columns can be computed by a method analogous to that of Fripertinger for isometry classes of linear codes, disallowing scalar transformation of individual coordinates.
%H A347970 Álvar Ibeas, <a href="/A347970/b347970.txt">Entries up to T(16, 7)</a>
%H A347970 H. Fripertinger, <a href="http://www.mathe2.uni-bayreuth.de/frib/codes/tables.html">Isometry classes of codes</a>
%H A347970 H. Fripertinger, <a href="http://www.mathe2.uni-bayreuth.de/frib/codes/tables_15.html">Number of the isometry classes of all ternary (n,k)-codes</a>
%H A347970 Álvar Ibeas, <a href="/A347970/a347970.txt">Column k=2 up to n=100</a>
%H A347970 Álvar Ibeas, <a href="/A347970/a347970_1.txt">Column k=3 up to n=100</a>
%H A347970 Álvar Ibeas, <a href="/A347970/a347970_2.txt">Column k=4 up to n=100</a>
%H A347970 Álvar Ibeas, <a href="/A347970/a347970_3.txt">Column k=5 up to n=100</a>
%H A347970 Álvar Ibeas, <a href="/A347970/a347970_4.txt">Column k=6 up to n=100</a>
%H A347970 Álvar Ibeas, <a href="/A347970/a347970_5.txt">Column k=7 up to n=100</a>
%e A347970 Triangle begins:
%e A347970   k:  0   1   2   3   4   5   6   7
%e A347970       -----------------------------
%e A347970 n=0:  1
%e A347970 n=1:  1   1
%e A347970 n=2:  1   3   1
%e A347970 n=3:  1   5   5   1
%e A347970 n=4:  1   8  16   8   1
%e A347970 n=5:  1  11  39  39  11   1
%e A347970 n=6:  1  15  87 168  87  15   1
%e A347970 n=7:  1  19 176 644 644 176  19   1
%e A347970 There are 4 = A022167(2, 1) one-dimensional subspaces in (F_3)^2, namely, those generated by (0, 1), (1, 0), (1, 1), and (1, 2). The first two are related by coordinate swap, while the remaining two are invariant. Hence, T(2, 1) = 3.
%Y A347970 Cf. A022167, A024206(n+1) (column k=1), A076831.
%K A347970 nonn,tabl
%O A347970 0,5
%A A347970 _Álvar Ibeas_, Sep 21 2021