A347971 Triangle read by rows: T(n, k) is the number of k-dimensional subspaces in (F_4)^n, counted up to coordinate permutation (n >= 0, 0 <= k <= n).
1, 1, 1, 1, 3, 1, 1, 7, 7, 1, 1, 12, 31, 12, 1, 1, 19, 111, 111, 19, 1, 1, 29, 361, 964, 361, 29, 1, 1, 41, 1068, 8042, 8042, 1068, 41, 1, 1, 56, 2954, 64674, 205065, 64674, 2954, 56, 1, 1, 75, 7681, 492387, 5402621, 5402621, 492387, 7681, 75, 1, 1, 97, 18880, 3507681, 137287827
Offset: 0
Examples
Triangle begins: k: 0 1 2 3 4 5 6 ------------------------------- n=0: 1 n=1: 1 1 n=2: 1 3 1 n=3: 1 7 7 1 n=4: 1 12 31 12 1 n=5: 1 19 111 111 19 1 n=6: 1 29 361 964 361 29 1 There are 5 = A022168(2, 1) one-dimensional subspaces in (F_4)^2, namely, those generated by vectors (0, 1), (1, 0), (1, 1), (1, x), and (1, x + 1), where F_4 = F_2[x] / (x^2 + x + 1). The coordinate swap identifies the first two on the one hand and the last two on the other, while <(1, 1)> is invariant. Hence, T(2, 1) = 3.
Links
- Álvar Ibeas, Entries up to T(14, 6)
- H. Fripertinger, Isometry classes of codes
- H. Fripertinger, Number of the isometry classes of all quaternary (n,k)-codes
- Álvar Ibeas, Column k=1 up to n=100
- Álvar Ibeas, Column k=2 up to n=100
- Álvar Ibeas, Column k=3 up to n=100
- Álvar Ibeas, Column k=4 up to n=100
- Álvar Ibeas, Column k=5 up to n=100
- Álvar Ibeas, Column k=6 up to n=100
Formula
T(n, 1) = T(n - 1, 1) + A007997(n + 5).
Comments