A347973 Triangle read by rows: T(n, k) is the number of k-dimensional subspaces in (F_7)^n, counted up to coordinate permutation (n >= 0, 0 <= k <= n).
1, 1, 1, 1, 5, 1, 1, 15, 15, 1, 1, 37, 162, 37, 1, 1, 79, 1538, 1538, 79, 1, 1, 159, 13237, 74830, 13237, 159, 1, 1, 291, 102019, 3546909, 3546909, 102019, 291, 1, 1, 508, 708712, 153181682, 1010416196, 153181682, 708712, 508, 1, 1, 843, 4473998, 5954653026, 267444866627
Offset: 0
Examples
Triangle begins: k: 0 1 2 3 4 5 -------------------------- n=0: 1 n=1: 1 1 n=2: 1 5 1 n=3: 1 15 15 1 n=4: 1 37 162 37 1 n=5: 1 79 1538 1538 79 1 There are 8 = A022171(2, 1) one-dimensional subspaces in (F_7)^2. Two of them (<(1, 1)> and <(1, 6)>) are invariant by coordinate swap, while the rest are grouped in orbits of size two. Hence, T(2, 1) = 5.
Links
- Álvar Ibeas, Entries up to T(10, 4)
- H. Fripertinger, Isometry classes of codes
- Álvar Ibeas, Column k=1 up to n=100
- Álvar Ibeas, Column k=2 up to n=100
- Álvar Ibeas, Column k=3 up to n=100
- Álvar Ibeas, Column k=4 up to n=100
Formula
T(n, 1) = T(n - 1, 1) + A032191(n + 6).
Comments