A347974 Triangle read by rows: T(n, k) is the number of k-dimensional subspaces in (F_8)^n, counted up to coordinate permutation (n >= 0, 0 <= k <= n).
1, 1, 1, 1, 5, 1, 1, 17, 17, 1, 1, 47, 242, 47, 1, 1, 113, 3071, 3071, 113, 1, 1, 245, 34477, 232290, 34477, 245, 1, 1, 491, 341633, 16665755, 16665755, 341633, 491, 1, 1, 920, 3022045, 1073874283, 8241549097, 1073874283, 3022045, 920, 1, 1, 1635, 24145695
Offset: 0
Examples
Triangle begins: k: 0 1 2 3 4 5 -------------------------- n=0: 1 n=1: 1 1 n=2: 1 5 1 n=3: 1 17 17 1 n=4: 1 47 242 47 1 n=5: 1 113 3071 3071 113 1 There are 9 = A022172(2, 1) one-dimensional subspaces in (F_8)^2. Among them, <(1, 1)> is invariant by coordinate swap and the rest are grouped in orbits of size two. Hence, T(2, 1) = 5.
Links
- Álvar Ibeas, Entries up to T(10, 4)
- H. Fripertinger, Isometry classes of codes
- Álvar Ibeas, Column k=1 up to n=100
- Álvar Ibeas, Column k=2 up to n=100
- Álvar Ibeas, Column k=3 up to n=100
- Álvar Ibeas, Column k=4 up to n=100
Formula
T(n, 1) = T(n - 1, 1) + A032192(n + 7).
Comments