This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A347975 #12 Sep 30 2021 11:42:23 %S A347975 1,1,1,1,6,1,1,21,21,1,1,64,374,64,1,1,163,5900,5900,163,1,1,380, %T A347975 82587,644680,82587,380,1,1,809,1018388,66136870,66136870,1018388,809, %U A347975 1,1,1619,11174165,6057912073,52901629980,6057912073,11174165,1619,1,1,3049,110404788 %N A347975 Triangle read by rows: T(n, k) is the number of k-dimensional subspaces in (F_9)^n, counted up to coordinate permutation (n >= 0, 0 <= k <= n). %C A347975 Columns can be computed by a method analogous to that of Fripertinger for isometry classes of linear codes, disallowing scalar transformation of individual coordinates. %C A347975 Regarding the formula for column k = 1, note that A241926(q-1, n) counts, up to coordinate permutation, one-dimensional subspaces of (F_q)^n generated by a vector with no zero component. %H A347975 Álvar Ibeas, <a href="/A347975/b347975.txt">Entries up to T(10, 4)</a> %H A347975 H. Fripertinger, <a href="http://www.mathe2.uni-bayreuth.de/frib/codes/tables.html">Isometry classes of codes</a> %H A347975 Álvar Ibeas, <a href="/A347975/a347975.txt">Column k=1 up to n=100</a> %H A347975 Álvar Ibeas, <a href="/A347975/a347975_1.txt">Column k=2 up to n=100</a> %H A347975 Álvar Ibeas, <a href="/A347975/a347975_2.txt">Column k=3 up to n=100</a> %H A347975 Álvar Ibeas, <a href="/A347975/a347975_3.txt">Column k=4 up to n=100</a> %F A347975 T(n, 1) = T(n-1, 1) + A032193(n+8). %e A347975 Triangle begins: %e A347975 k: 0 1 2 3 4 5 %e A347975 -------------------------- %e A347975 n=0: 1 %e A347975 n=1: 1 1 %e A347975 n=2: 1 6 1 %e A347975 n=3: 1 21 21 1 %e A347975 n=4: 1 64 374 64 1 %e A347975 n=5: 1 163 5900 5900 163 1 %e A347975 There are 10 = A022173(2, 1) one-dimensional subspaces in (F_9)^2. Among them, <(1, 1)> and <(1, 2)> are invariant by coordinate swap and the rest are grouped in orbits of size two. Hence, T(2, 1) = 6. %Y A347975 Cf. A022173, A032193, A241926. %K A347975 nonn,tabl %O A347975 0,5 %A A347975 _Álvar Ibeas_, Sep 21 2021