This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A347976 #60 Mar 22 2023 17:56:57 %S A347976 1,2,4,3,8,11,4,13,22,26,5,19,38,52,57,6,26,60,94,114,120,7,34,89,158, %T A347976 213,240,247,8,43,126,251,376,459,494,502,9,53,172,381,632,841,960, %U A347976 1004,1013,10,64,228,557,1018,1479,1808,1972,2026,2036,11,76,295,789,1580,2503,3294,3788,4007,4072,4083 %N A347976 Triangle T(n,k) read by rows: the rows list volumes of rank 2 Schubert matroid polytopes. %C A347976 T(n,k) is the volume of the base polytope of the Lattice Path Matroid bounded by the paths L = (n-2)*[0]+[1,1] and U = [1]+(n-k-2)*[0]+[1]+(k)*[0]. %H A347976 Carolina Benedetti, Kolja Knauer, and Jerónimo Valencia-Porras, <a href="https://arxiv.org/abs/2303.10458">On lattice path matroid polytopes: alcoved triangulations and snake decompositions</a>, arXiv:2303.10458 [math.CO], 2023. %F A347976 T(n,k-1) + T(n,k) + k = T(n+1,k). %F A347976 For a fixed k, the column T(n,k) is given by a polynomial in n. %F A347976 For any 1 <= k <= n-3, T(n,k) + T(n,n-k-2) = T(n,n-2). %e A347976 The triangle T(n,k) starts as follows: %e A347976 [n\k] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] %e A347976 [3] 1; %e A347976 [4] 2, 4; %e A347976 [5] 3, 8, 11; %e A347976 [6] 4, 13, 22, 26; %e A347976 [7] 5, 19, 38, 52, 57; %e A347976 [8] 6, 26, 60, 94, 114, 120; %e A347976 [9] 7, 34, 89, 158, 213, 240, 247; %e A347976 [10] 8, 43, 126, 251, 376, 459, 494, 502; %e A347976 [11] 9, 53, 172, 381, 632, 841, 960, 1004, 1013; %e A347976 [12] 10, 64, 228, 557, 1018, 1479, 1808, 1972, 2026, 2036; %e A347976 [13] 11, 76, 295, 789, 1580, 2503, 3294, 3788, 4007, 4072, 4083; %e A347976 [14] 12, 89, 374, 1088, 2374, 4089, 5804, 7090, 7804, 8089, 8166, 8178; %e A347976 ... %Y A347976 Columns: A000027 (k=1), A034856 (k=2). %Y A347976 Diagonals: A000295 (k=n-2), A005803 (k=n-3), A277411 (k=n-4). %K A347976 nonn,tabl %O A347976 3,2 %A A347976 _Jerónimo Valencia Porras_, Sep 21 2021