cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347978 E.g.f.: 1/(1 + x)^(1/(1 - x)).

This page as a plain text file.
%I A347978 #6 Sep 22 2021 09:14:47
%S A347978 1,-1,0,-3,4,-30,186,-630,11600,-26712,1005480,-2581920,117196872,
%T A347978 -485308824,17734457664,-131070696120,3387342915840,-43890398953920,
%U A347978 801577841697216,-17363169328243392,233460174245351040,-7968629225100337920,84363134551361043840
%N A347978 E.g.f.: 1/(1 + x)^(1/(1 - x)).
%F A347978 E.g.f.: exp( Sum_{k>=1} x^k * Sum_{j=1..k} (-1)^j / j ).
%F A347978 a(0) = 1; a(n) = -Sum_{k=1..n} binomial(n-1,k-1) * A024167(k) * a(n-k).
%F A347978 a(0) = 1; a(n) = -Sum_{k=1..n} binomial(n,k) * A073478(k) * a(n-k).
%t A347978 nmax = 22; CoefficientList[Series[1/(1 + x)^(1/(1 - x)), {x, 0, nmax}], x] Range[0, nmax]!
%t A347978 A024167[n_] := n! Sum[(-1)^(k + 1)/k, {k, 1, n}]; a[0] = 1; a[n_] := a[n] = -Sum[Binomial[n - 1, k - 1] A024167[k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 22}]
%o A347978 (PARI) my(x='x+O('x^30)); Vec(serlaplace(1/(1+x)^(1/(1-x)))) \\ _Michel Marcus_, Sep 22 2021
%Y A347978 Cf. A005727, A007120, A008405, A024167, A058312, A058313, A073478, A087761.
%K A347978 sign
%O A347978 0,4
%A A347978 _Ilya Gutkovskiy_, Sep 22 2021