This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A347979 #27 Sep 23 2021 12:02:45 %S A347979 2,6,60,120,360,840,3360,2520,5040,10080,15120,32760,27720,50400, %T A347979 98280,83160,110880,138600,221760,277200,332640,360360,554400,960960, %U A347979 831600,942480,720720,2217600,1965600,1441440 %N A347979 a(n) is the smallest even number k whose symmetric representation of sigma(k) has maximum width n. %C A347979 For the 30 known terms the symmetric representation of sigma consists of a single part, i.e., this is a subsequence of A174973 = A238443. %C A347979 The sequence is not increasing with the maximum width of the symmetric representation of sigma. %C A347979 Also a(33) = 2162160 is the only further number in the sequence less than 2500000. %F A347979 It appears that a(n) = A250070(n) if n >= 2. %e A347979 The pattern of maximum widths within the single part of the symmetric representation of sigma for the first four numbers in the sequence is: %e A347979 a(n) parts successive widths %e A347979 2: 1 1 %e A347979 6: 1 1 2 1 %e A347979 60: 1 1 2 3 2 3 2 1 %e A347979 120: 1 1 2 3 4 3 2 1 %t A347979 a262045[n_] := Module[{a=Accumulate[Map[If[Mod[n - # (#+1)/2, #]==0, (-1)^(#+1), 0] &, Range[Floor[(Sqrt[8n+1]-1)/2]]]]}, Join[a, Reverse[a]]] %t A347979 a347979[n_, mw_] := Module[{list=Table[0, mw], i, v}, For[i=2, i<=n, i+=2, v=Max[a262045[i]]; If [list[[v]]==0, list[[v]]=i]]; list] %t A347979 a347979[2500000, 33] (* computes a(1..30), a(33); a(31..32) > 2500000 *) %Y A347979 Cf. A174973, A237048, A237270, A237271, A237591, A237593, A238443, A249351 (widths), A250070, A262045, A341969, A341970, A341971, A347980. %K A347979 nonn,more %O A347979 1,1 %A A347979 _Hartmut F. W. Hoft_, Sep 22 2021