A347983 Smallest number requiring n 1's to build using +, -, *, and ^.
1, 2, 3, 4, 5, 7, 11, 13, 21, 39, 41, 43, 115, 173, 276, 413, 823, 1389, 1654
Offset: 1
Examples
a(7) = 11 because 2=1+1, 3=1+1+1, 4=1+1+1+1, 5=1+1+1+1+1, 6=(1+1)(1+1+1), 7=(1+1)(1+1+1)+1, 8=(1+1)^(1+1+1), 9=(1+1+1)^(1+1), and 10=(1+1+1)^(1+1)+1, all requiring fewer than seven ones, whereas a minimal way of expressing 11 is (1+1+1)^(1+1)+1+1 with seven ones. (Subtraction does not actually play a necessary role in a minimal expression until 15=(1+1)^(1+1+1+1)-1, and does not affect the value of a(n) until n = 10 because 23=(1+1+1)(1+1)^(1+1+1)-1 would otherwise be the smallest number requiring ten ones.)
Comments