A348001 Number of distinct values obtained when the unitary totient function (A047994) is applied to the unitary divisors of n.
1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 4, 2, 2, 2, 2, 4, 4, 2, 2, 4, 2, 2, 2, 4, 2, 4, 2, 2, 4, 2, 4, 4, 2, 2, 4, 4, 2, 4, 2, 4, 4, 2, 2, 4, 2, 2, 4, 4, 2, 2, 4, 4, 4, 2, 2, 8, 2, 2, 4, 2, 4, 4, 2, 4, 4, 4, 2, 4, 2, 2, 4, 4, 4, 4, 2, 4, 2, 2, 2, 7, 4, 2, 4
Offset: 1
Keywords
Examples
n = 6 has four unitary divisors: 1, 2, 3 and 6. Applying A047994 to these gives 1, 1, 2 and 2, with just 2 distinct values, thus a(6) = 2. n = 12 has four unitary divisors: 1, 3, 4 and 12. Applying A047994 to these gives 4 distinct values, 1, 2, 3 and 6, thus a(12) = 4.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
f[p_, e_] := p^e - 1; uphi[1] = 1; uphi[n_] := Times @@ f @@@ FactorInteger[n]; a[n_] := Length @ Union[uphi /@ Select[Divisors[n], CoprimeQ[#, n/#] &]]; Array[a,100]
Formula
a(2^e) = 2 for e > 1.
a(p^e) = 2 for an odd prime p and e > 0.
a(n) >= omega(n), with equality if and only if n is in A278568.