This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A348002 #4 Sep 24 2021 09:05:26 %S A348002 1,3,12,60,420,660,4620,8580,9240,60060,78540,106260,157080,1021020, %T A348002 1381380,1492260,1806420,2762760,2984520,23483460,34321980,38798760, %U A348002 46966920,68643960,681020340,892371480,1848483780,1990674840,2127962760,3226266120 %N A348002 Numbers with a record number of distinct values of the unitary totient function applied to their unitary divisors (A348001). %C A348002 The corresponding record values are 1, 2, 4, 8, 13, 16, 26, 28, 32, 40, 50, 52, 64, 72, 80, 84, 100, 104, 128, 144, 168, 176, 200, 256, 288, 352, 360, 416, 424, 512, ... %C A348002 This sequence is infinite since A348001 is unbounded: A348001(n) >= omega(n). %C A348002 a(31) > 2*10^10. %e A348002 The first 12 terms of A348001(k) are 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2 and 4. The record values, 1, 2 and 4, are obtained at k = 1, 3 and 12. Therefore, this sequence begins with 1, 3, 12. %t A348002 f[p_, e_] := p^e - 1; uphi[1] = 1; uphi[n_] := Times @@ f @@@ FactorInteger[n]; s[n_] := Length @ Union[uphi /@ Select[Divisors[n], CoprimeQ[#, n/#] &]]; sm = 0; seq = {}; Do[s1 = s[n]; If[s1 > sm, sm = s1; AppendTo[seq, n]], {n, 1, 10^5}]; seq %Y A348002 The unitary version of A328858. %Y A348002 Cf. A047994, A348001, A348003. %K A348002 nonn,more %O A348002 1,2 %A A348002 _Amiram Eldar_, Sep 23 2021