This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A348005 #47 Aug 04 2022 15:04:23 %S A348005 4,6,10,12,14,16,20,22,24,26,28,30,34,36,38,40,42,44,46,48,52,54,56, %T A348005 58,60,62,64,66,68,70,74,76,78,80,82,84,86,88,90,92,94,96,100,102,104, %U A348005 106,108,110,112,114,116,118,120,122,124,126,130,132,134,136,138,140,142,144,146,148,150,152,154,156 %N A348005 Positive even integers with an even number of even divisors. %C A348005 These terms are exactly the even numbers in A183300. %C A348005 Complement of A001105 relative to the positive even integers (A005843 \ {0}). %C A348005 Note that odd integers with an odd number of odd divisors are the odd squares (A016754). %F A348005 a(n) = 2*A000037(n). %e A348005 The divisors of 14 are {1, 2, 7, 14}, two of them: 2 and 14 are even, hence 14 is a term. %e A348005 The divisors of 16 are {1, 2, 4, 8, 16}, four of them: 2, 4, 8 and 16 are even, hence 16 is another term. %p A348005 filter:= q -> irem(q, 2) = 0 and sqrt(q/2) <> floor(sqrt(q/2)) : select(filter, [$1..156]); %t A348005 m = 9; 2 * Complement[Range[m^2], Range[m]^2] (* _Amiram Eldar_, Oct 02 2021 *) %o A348005 (PARI) isok(k) = !(k % 2) && !(sumdiv(k, d, !(d % 2)) % 2); \\ _Michel Marcus_, Oct 05 2021 %o A348005 (Python) %o A348005 from math import isqrt %o A348005 def A348005(n): return n+(m:=isqrt(n))+int(n-m*(m+1)>=1)<<1 # _Chai Wah Wu_, Aug 04 2022 %Y A348005 Cf. A000037, A001105, A005843, A016754. %Y A348005 Equals A183300 \ A005408. %Y A348005 Intersection of A005843 and A183300. %Y A348005 ------------------------------------------------------------------------- %Y A348005 | Integers with | an even number of ... | an odd number of ... | %Y A348005 ------------------------------------------------------------------------- %Y A348005 | ... even divisors | A183300 | A001105 | %Y A348005 | ... odd divisors | A028983 | A028982 | %Y A348005 ------------------------------------------------------------------------- %K A348005 nonn %O A348005 1,1 %A A348005 _Bernard Schott_, Oct 02 2021