cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348005 Positive even integers with an even number of even divisors.

This page as a plain text file.
%I A348005 #47 Aug 04 2022 15:04:23
%S A348005 4,6,10,12,14,16,20,22,24,26,28,30,34,36,38,40,42,44,46,48,52,54,56,
%T A348005 58,60,62,64,66,68,70,74,76,78,80,82,84,86,88,90,92,94,96,100,102,104,
%U A348005 106,108,110,112,114,116,118,120,122,124,126,130,132,134,136,138,140,142,144,146,148,150,152,154,156
%N A348005 Positive even integers with an even number of even divisors.
%C A348005 These terms are exactly the even numbers in A183300.
%C A348005 Complement of A001105 relative to the positive even integers (A005843 \ {0}).
%C A348005 Note that odd integers with an odd number of odd divisors are the odd squares (A016754).
%F A348005 a(n) = 2*A000037(n).
%e A348005 The divisors of 14 are {1, 2, 7, 14}, two of them: 2 and 14 are even, hence 14 is a term.
%e A348005 The divisors of 16 are {1, 2, 4, 8, 16}, four of them: 2, 4, 8 and 16 are even, hence 16 is another term.
%p A348005 filter:= q -> irem(q, 2) = 0 and sqrt(q/2) <> floor(sqrt(q/2)) : select(filter, [$1..156]);
%t A348005 m = 9; 2 * Complement[Range[m^2], Range[m]^2] (* _Amiram Eldar_, Oct 02 2021 *)
%o A348005 (PARI) isok(k) = !(k % 2) && !(sumdiv(k, d, !(d % 2)) % 2); \\ _Michel Marcus_, Oct 05 2021
%o A348005 (Python)
%o A348005 from math import isqrt
%o A348005 def A348005(n): return n+(m:=isqrt(n))+int(n-m*(m+1)>=1)<<1 # _Chai Wah Wu_, Aug 04 2022
%Y A348005 Cf. A000037, A001105, A005843, A016754.
%Y A348005 Equals A183300 \ A005408.
%Y A348005 Intersection of A005843 and A183300.
%Y A348005      -------------------------------------------------------------------------
%Y A348005     |     Integers with    |  an even number of ...   |  an odd number of ... |
%Y A348005      -------------------------------------------------------------------------
%Y A348005     |  ... even divisors   |         A183300          |        A001105        |
%Y A348005     |  ... odd divisors    |         A028983          |        A028982        |
%Y A348005      -------------------------------------------------------------------------
%K A348005 nonn
%O A348005 1,1
%A A348005 _Bernard Schott_, Oct 02 2021