This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A348006 #56 Oct 25 2022 00:41:59 %S A348006 0,0,11,0,11,11,35,0,35,11,35,11,27,35,107,0,35,35,59,11,43,35,107,11, %T A348006 59,27,6155,35,59,107,6155,0,67,35,107,35,75,59,203,11,6155,43,131,35, %U A348006 91,107,6155,11,99,59,155,27,107,6155,6155,35,131,59,203,107 %N A348006 Largest increment in the trajectory from n to 1 in the Collatz map (or 3x+1 problem), or -1 if no such trajectory exists. %C A348006 The largest increment occurs when the trajectory reaches its largest value via a 3x+1 step. %C A348006 All nonzero terms are odd, since they are of the form 2k+1, for some k >= 5. %H A348006 <a href="/index/3#3x1">Index entries for sequences related to 3x+1 (or Collatz) problem</a> %F A348006 If n = 2^k (for k >= 0), a(n) = 0; otherwise a(n) = 2*A087232(n)+1 = (2*A025586(n)+1)/3 = A025586(n)-A087232(n). %e A348006 a(3) = 11 because the trajectory starting at 3 is 3 -> 10 -> 5 -> 16 -> 8 -> 4 -> 2 -> 1, and the largest increment (from 5 to 16) is 11. %e A348006 a(4) = 0 because there are only halving steps in the Collatz trajectory starting at 4. %t A348006 nterms=100;Table[c=n;mr=0;While[c>1,If[OddQ[c],mr=Max[mr,2c+1];c=3c+1,c/=2^IntegerExponent[c,2]]];mr,{n,nterms}] %o A348006 (Python) %o A348006 def A348006(n): %o A348006 c, mr = n, 0 %o A348006 while c > 1: %o A348006 if c % 2: %o A348006 mr = max(mr, 2*c+1) %o A348006 c = 3*c+1 %o A348006 else: %o A348006 c //= 2 %o A348006 return mr %o A348006 print([A348006(n) for n in range(1, 100)]) %o A348006 (PARI) a(n)=n>>=valuation(n,2); my(r); while(n>1, my(t=2*n+1); n+=t; n>>=valuation(n,2); if(t>r, r=t)); r \\ _Charles R Greathouse IV_, Oct 25 2022 %Y A348006 Cf. A006370, A025586, A070165, A087232. %K A348006 nonn,easy %O A348006 1,3 %A A348006 _Paolo Xausa_, Oct 02 2021