This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A348013 #9 Sep 25 2021 06:46:54 %S A348013 1,1,1,3,2,1,4,7,3,1,10,14,12,4,1,15,37,31,18,5,1,35,74,90,56,25,6,1, %T A348013 56,176,216,179,90,33,7,1,126,352,552,492,315,134,42,8,1,210,794,1269, %U A348013 1362,966,510,189,52,9,1,462,1588,3033,3480,2890,1716,777,256,63,10,1,792,3473 %N A348013 Triangle by rows: T(n,k) is the number of n-step Dyck paths with k catastrophes. %C A348013 T(n,k) is the number chains of k "incomplete" Dyck paths with a total length of n. (Incomplete Dyck paths are those not ending at the horizontal axis.) Each of the k subsections of the paths does not return to the horizontal axis; they are commonly referred to as paths with catastrophes (like black Fridays on stock market charts). %F A348013 T(n,1) = A037952(n). %F A348013 T(n,2) = A191389(n+2). %F A348013 The generating function of column k is g037952(x)^k, where g037952(x) = x +x^2 +3*x^3+... is the generating function of A037952. %e A348013 The triangle starts %e A348013 1 %e A348013 1 1 %e A348013 3 2 1 %e A348013 4 7 3 1 %e A348013 10 14 12 4 1 %e A348013 15 37 31 18 5 1 %e A348013 35 74 90 56 25 6 1 %e A348013 56 176 216 179 90 33 7 1 %e A348013 126 352 552 492 315 134 42 8 1 %e A348013 210 794 1269 1362 966 510 189 52 9 1 %e A348013 462 1588 3033 3480 2890 1716 777 256 63 10 1 %e A348013 792 3473 6781 8901 8060 5521 2835 1130 336 75 11 1 %e A348013 T(1,1)=1 counts U| where the vertical bar indicates starting a new path at the horizontal axis (the catastrophe). %e A348013 T(2,1)=1 counts UU|. %e A348013 T(4,1)=4 counts UUUU|, UUUD|, UUDU|, UDUU|. %e A348013 T(3,2)=2 counts UU|U| and U|UU| . %e A348013 T(4,2)=7 counts U|UUU|, U|UUD|, U|UDU|, UU|UU|, UUU|U|, UUD|U| and UDU|U|. %Y A348013 Cf. A348012 (row sums), A037952 (k=1), A191389 (k=2). %K A348013 nonn,tabl,easy %O A348013 1,4 %A A348013 _R. J. Mathar_, Sep 24 2021