This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A348043 #11 Oct 14 2021 11:07:54 %S A348043 1,1,2,1,2,3,1,2,3,4,1,2,2,4,5,1,2,3,2,5,6,1,2,3,4,3,6,7,1,2,2,2,5,2, %T A348043 7,8,1,2,3,2,2,6,5,8,9,1,2,3,2,3,6,7,2,9,10,1,2,2,4,3,2,3,8,4,10,11,1, %U A348043 2,3,4,5,3,5,2,9,3,11,12,1,2,3,2,3,6,2,2,2,10,7,12,13,1,2,2,2,2,2,7,2,4,2,11,2,13,14 %N A348043 Square array A(n,k) = the nearest common ancestor of n and n*k in Doudna tree (A005940). %C A348043 Array is read by falling antidiagonals as A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), ... %H A348043 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a> %F A348043 A(n, k) = A348041(n, n*k). %e A348043 The top left 17x17 corner of the array: %e A348043 n/k | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 %e A348043 ------+---------------------------------------------------------------------- %e A348043 1 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, %e A348043 2 | 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, %e A348043 3 | 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 3, 3, 3, %e A348043 4 | 4, 4, 2, 4, 2, 2, 2, 4, 4, 2, 2, 2, 2, 2, 2, 4, 2, %e A348043 5 | 5, 5, 3, 5, 2, 3, 3, 5, 3, 2, 5, 3, 5, 3, 2, 5, 5, %e A348043 6 | 6, 6, 2, 6, 6, 2, 3, 6, 2, 6, 3, 2, 3, 3, 6, 6, 3, %e A348043 7 | 7, 7, 5, 7, 3, 5, 2, 7, 5, 3, 3, 5, 5, 2, 3, 7, 7, %e A348043 8 | 8, 8, 2, 8, 2, 2, 2, 8, 4, 2, 2, 2, 2, 2, 2, 8, 2, %e A348043 9 | 9, 9, 4, 9, 2, 4, 2, 9, 4, 2, 2, 4, 2, 2, 2, 9, 2, %e A348043 10 | 10, 10, 3, 10, 2, 3, 3, 10, 3, 2, 10, 3, 5, 3, 2, 10, 5, %e A348043 11 | 11, 11, 7, 11, 5, 7, 3, 11, 7, 5, 2, 7, 3, 3, 5, 11, 5, %e A348043 12 | 12, 12, 2, 12, 6, 2, 3, 12, 2, 6, 3, 2, 3, 3, 12, 12, 3, %e A348043 13 | 13, 13, 11, 13, 7, 11, 5, 13, 11, 7, 3, 11, 2, 5, 7, 13, 3, %e A348043 14 | 14, 14, 5, 14, 3, 5, 2, 14, 5, 3, 3, 5, 5, 2, 3, 14, 14, %e A348043 15 | 15, 15, 6, 15, 2, 6, 15, 15, 6, 2, 3, 6, 3, 15, 2, 15, 3, %e A348043 16 | 16, 16, 2, 16, 2, 2, 2, 16, 4, 2, 2, 2, 2, 2, 2, 16, 2, %e A348043 17 | 17, 17, 13, 17, 11, 13, 7, 17, 13, 11, 5, 13, 3, 7, 11, 17, 2, %o A348043 (PARI) %o A348043 \\ Needs also code from A348041: %o A348043 A348043sq(x,y) = A348041sq(x,x*y); %o A348043 A348043list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A348043sq(col,(a-(col-1))))); (v); }; %o A348043 v348043 = A348043list(up_to); %o A348043 A348043(n) = v348043[n]; %Y A348043 Cf. A005940, A156552, A348041, A348042, A348044 (main diagonal). %Y A348043 Cf. A000027 (all columns k that are powers of two: k = 2^e, for e >= 0). %K A348043 nonn,tabl %O A348043 1,3 %A A348043 _Antti Karttunen_, Sep 27 2021