This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A348047 #12 Oct 29 2021 07:55:26 %S A348047 1,3,4,1,6,12,8,3,1,18,12,4,14,24,24,1,18,3,20,6,32,36,24,12,1,42,8,8, %T A348047 30,72,32,9,48,54,48,1,38,60,56,18,42,96,44,12,6,72,48,4,1,3,72,14,54, %U A348047 24,72,24,80,90,60,24,62,96,8,1,84,144,68,18,96,144,72,3,74,114,4,20,96,168,80,6,1,126,84,32 %N A348047 a(n) = gcd(sigma(n), A003959(n)), where A003959 is multiplicative with a(p^e) = (p+1)^e and sigma is the sum of divisors function. %C A348047 This is not multiplicative. The first point where a(m*n) = a(m)*a(n) does not hold for coprime m and n is 196 = 4*49, where a(196) = 3, although a(4) = 1 and a(49) = 4. %H A348047 Antti Karttunen, <a href="/A348047/b348047.txt">Table of n, a(n) for n = 1..20000</a> %H A348047 <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a> %F A348047 a(n) = gcd(A000203(n), A003959(n)). %F A348047 a(n) = gcd(A000203(n), A348029(n)) = gcd(A003959(n), A348029(n)). %F A348047 a(n) = A000203(n)/ A348048(n) = A003959(n) / A348049(n). %t A348047 f[p_, e_] := (p + 1)^e; a[1] = 1; a[n_] := GCD[Times @@ f @@@ FactorInteger[n], DivisorSigma[1, n]]; Array[a, 100] (* _Amiram Eldar_, Oct 21 2021 *) %o A348047 (PARI) %o A348047 A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); }; %o A348047 A348047(n) = gcd(sigma(n), A003959(n)); %Y A348047 Cf. A000203, A003959, A348029, A348048, A348049. %Y A348047 Cf. also A344695. %K A348047 nonn %O A348047 1,2 %A A348047 _Antti Karttunen_, Oct 21 2021