This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A348050 #22 Oct 28 2021 17:39:54 %S A348050 1,2,4,8,88,252,2112,4224,8448,44544,48384,405504,4091904,405909504, %T A348050 677707776,4285005824,21128282112,29142024192,4815463645184, %U A348050 445488555884544,27874867776847872,40539458585493504,63556806860865536,840261068860162048,4870324782874230784 %N A348050 Palindromes setting a new record of their number of prime divisors A001222. %t A348050 m=0;lst=Union@Flatten[Table[{FromDigits@Join[s=IntegerDigits@n,Reverse@s],FromDigits@Join[w=IntegerDigits@n,Rest@Reverse@w]},{n,10^5}]];Do[t=PrimeOmega@lst[[n]];If[t>m,Print@lst[[n]];m=t],{n,Length@lst}] (* _Giorgos Kalogeropoulos_, Oct 25 2021 *) %o A348050 (Python) %o A348050 from sympy import factorint %o A348050 from itertools import product %o A348050 def palsthru(maxdigits): %o A348050 midrange = [[""], [str(i) for i in range(10)]] %o A348050 for digits in range(1, maxdigits+1): %o A348050 for p in product("0123456789", repeat=digits//2): %o A348050 left = "".join(p) %o A348050 if len(left) and left[0] == '0': continue %o A348050 for middle in midrange[digits%2]: %o A348050 yield int(left+middle+left[::-1]) %o A348050 def afind(maxdigits): %o A348050 record = -1 %o A348050 for p in palsthru(maxdigits): %o A348050 f = factorint(p, multiple=True) %o A348050 if p > 0 and len(f) > record: %o A348050 record = len(f) %o A348050 print(p, end=", ") %o A348050 afind(10) # _Michael S. Branicky_, Oct 25 2021 %Y A348050 Cf. A001222, A002113, A046399, A335645. %Y A348050 Cf. A046328, A046329, A046330, A046331, A046332, A046333, A046334, A046335, A046336. %K A348050 nonn,base %O A348050 1,2 %A A348050 _Hugo Pfoertner_, Oct 25 2021 %E A348050 a(1) = 1 from _David A. Corneth_, Oct 25 2021 %E A348050 a(16)-a(19) from _Giorgos Kalogeropoulos_, Oct 25 2021 %E A348050 a(20) from _Michael S. Branicky_, Oct 25 2021 %E A348050 a(21)-a(25) from _Chai Wah Wu_, Oct 28 2021