cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348054 Positive integers that are the product of two integers ending with 7.

This page as a plain text file.
%I A348054 #7 Oct 21 2021 01:47:53
%S A348054 49,119,189,259,289,329,399,459,469,539,609,629,679,729,749,799,819,
%T A348054 889,959,969,999,1029,1099,1139,1169,1239,1269,1309,1369,1379,1449,
%U A348054 1479,1519,1539,1589,1649,1659,1729,1739,1799,1809,1819,1869,1939,1989,2009,2079,2109
%N A348054 Positive integers that are the product of two integers ending with 7.
%F A348054 Lim_{n->infinity} a(n)/a(n-1) = 1.
%e A348054 49 = 7*7, 119 = 7*17, 189 = 7*27, 259 = 7*37, 289 = 17*17, 329 = 7*47, 399 = 7*57, ...
%t A348054 a={}; For[n=0, n<=210, n++, For[k=0, k<=n, k++, If[Mod[10*n+9, 10*k+7]==0 && Mod[(10*n+9)/(10*k+7), 10]==7 && 10*n+9>Max[a], AppendTo[a, 10*n+9]]]]; a
%o A348054 (Python)
%o A348054 def aupto(lim): return sorted(set(a*b for a in range(7, lim//7+1, 10) for b in range(a, lim//a+1, 10)))
%o A348054 print(aupto(2110)) # _Michael S. Branicky_, Sep 26 2021
%Y A348054 Cf. A017377 (supersequence), A053742 (ending with 5), A139245 (ending with 2), A324297 (ending with 6), A346950 (ending with 3), A347253 (ending with 4), A348055.
%K A348054 nonn,base
%O A348054 1,1
%A A348054 _Stefano Spezia_, Sep 26 2021