This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A348062 #10 Nov 05 2021 09:55:23 %S A348062 2,3,5,17,29,43,47,113,127,179,197,257,277,283,293,317,383,439,449, %T A348062 467,479,509,569,641,659,719,797,863,1013,1069,1289,1373,1399,1427, %U A348062 1439,1487,1579,1627,1657,1753,1823,1913,1933,1949,2063,2203,2207,2213,2273,2339,2351 %N A348062 Primes p such that the length of the (eventual) period of the sequence {2^(2^k) mod p: k >= 0} is odd. %C A348062 Of these numbers only 3 and 5 are elite primes (A102742). (Aigner) %C A348062 Every prime of the form A036259(n)*2^m + 1, with m, n >= 1, is in this sequence. %H A348062 Alexander Aigner, <a href="https://doi.org/10.1007/BF01298923">Über Primzahlen, nach denen (fast) alle Fermatzahlen quadratische Nichtreste sind</a>, Monatsh. Math., Vol. 101 (1986), pp. 85-93; <a href="https://eudml.org/doc/178266">alternative link</a>. %o A348062 (PARI) L=List([2]); forprime(p=3, 2351, z=znorder(Mod(2, p)); if(znorder(Mod(2, z/2^valuation(z, 2)))%2, listput(L, p))); Vec(L) %Y A348062 Supersequence of A023394. %Y A348062 Cf. A102742 (elite primes), A256607. %K A348062 nonn %O A348062 1,1 %A A348062 _Arkadiusz Wesolowski_, Sep 26 2021