cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348064 Coefficient of x^3 in expansion of n!* Sum_{k=0..n} binomial(x,k).

This page as a plain text file.
%I A348064 #23 Sep 27 2021 18:30:57
%S A348064 1,-2,25,-75,1099,-4340,79064,-382060,8550916,-48306984,1303568760,
%T A348064 -8346754416,266955481584,-1894529909376,70785236377728,
%U A348064 -547468189825536,23610353987137536,-196402650598402560,9679304091074250240,-85687212859582878720,4785340778000524477440
%N A348064 Coefficient of x^3 in expansion of n!* Sum_{k=0..n} binomial(x,k).
%F A348064 E.g.f.: (log(1 + x))^3/(6 * (1 - x)).
%o A348064 (PARI) a(n) = n!*polcoef(sum(k=3, n, binomial(x, k)), 3);
%o A348064 (PARI) N=40; x='x+O('x^N); Vec(serlaplace(log(1+x)^3/(6*(1-x))))
%o A348064 (Python)
%o A348064 from sympy.abc import x
%o A348064 from sympy import ff, expand
%o A348064 def A348064(n): return sum(ff(n,n-k)*expand(ff(x,k)).coeff(x**3) for k in range(3,n+1)) # _Chai Wah Wu_, Sep 27 2021
%Y A348064 Column k=3 of A190782.
%Y A348064 Cf. A000399, A000454, A054651, A081051, A028340, A347987, A348063, A348065, A348068.
%K A348064 sign
%O A348064 3,2
%A A348064 _Seiichi Manyama_, Sep 26 2021