This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A348067 #12 Oct 12 2021 07:58:51 %S A348067 2,6,26,18,202,78,122,54,338,606,2462,234,794,366,2626,162,1346,1014, %T A348067 502,1818,1586,7386,4546,702,20402,2382,4394,1098,8914,7878,43954,486, %U A348067 32006,4038,12322,3042,2962,1506,10322,5454,12178,4758,4946,22158,34138,13638 %N A348067 Matula-Goebel tree number of tree n with a new leaf added below each existing vertex. %C A348067 k times nested a(a(...a(1))) = A076146(k+1) is the Matula-Goebel number of the binomial tree order k constructed by an "expansion" method starting from a singleton and successively adding a new leaf under every vertex. %H A348067 Kevin Ryde, <a href="/A348067/b348067.txt">Table of n, a(n) for n = 1..5000</a> %H A348067 <a href="/index/Mat#matula">Index entries for sequences related to Matula-Goebel numbers</a> %F A348067 a(n) = 2 * Product_{i=1..k} prime(a(primepi(p[i]))), where n = p[1]*...*p[k] is the prime factorization of n with multiplicity (A027746). %e A348067 tree n=6 tree a(6) = 78 %e A348067 R R___ root R %e A348067 | \ |\ \ %e A348067 A B A @ B new vertices %e A348067 | |\ \ "@" below each %e A348067 C C @ @ existing %e A348067 \ %e A348067 @ %o A348067 (PARI) a(n) = my(f=factor(n)); 2*factorback([prime(self()(primepi(p))) | p<-f[,1]], f[,2]); %Y A348067 Cf. A027746 (prime factors), A076146 (binomial tree). %Y A348067 Cf. A297002 (add leaves under children of the root). %K A348067 nonn %O A348067 1,1 %A A348067 _Kevin Ryde_, Oct 01 2021