cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348067 Matula-Goebel tree number of tree n with a new leaf added below each existing vertex.

This page as a plain text file.
%I A348067 #12 Oct 12 2021 07:58:51
%S A348067 2,6,26,18,202,78,122,54,338,606,2462,234,794,366,2626,162,1346,1014,
%T A348067 502,1818,1586,7386,4546,702,20402,2382,4394,1098,8914,7878,43954,486,
%U A348067 32006,4038,12322,3042,2962,1506,10322,5454,12178,4758,4946,22158,34138,13638
%N A348067 Matula-Goebel tree number of tree n with a new leaf added below each existing vertex.
%C A348067 k times nested a(a(...a(1))) = A076146(k+1) is the Matula-Goebel number of the binomial tree order k constructed by an "expansion" method starting from a singleton and successively adding a new leaf under every vertex.
%H A348067 Kevin Ryde, <a href="/A348067/b348067.txt">Table of n, a(n) for n = 1..5000</a>
%H A348067 <a href="/index/Mat#matula">Index entries for sequences related to Matula-Goebel numbers</a>
%F A348067 a(n) = 2 * Product_{i=1..k} prime(a(primepi(p[i]))), where n = p[1]*...*p[k] is the prime factorization of n with multiplicity (A027746).
%e A348067 tree n=6   tree a(6) = 78
%e A348067   R             R___        root R
%e A348067   | \           |\  \
%e A348067   A  B          A @  B      new vertices
%e A348067   |             |\    \     "@" below each
%e A348067   C             C @    @    existing
%e A348067                  \
%e A348067                   @
%o A348067 (PARI) a(n) = my(f=factor(n)); 2*factorback([prime(self()(primepi(p))) | p<-f[,1]], f[,2]);
%Y A348067 Cf. A027746 (prime factors), A076146 (binomial tree).
%Y A348067 Cf. A297002 (add leaves under children of the root).
%K A348067 nonn
%O A348067 1,1
%A A348067 _Kevin Ryde_, Oct 01 2021