A348069 Numbers that may be built from fewer ones by using / in addition to +, -, and *.
50221174, 251105873, 346765253, 387421583, 394594943, 526392311, 645706283, 657658237, 689544697, 689544698, 695921989, 774842071, 780158669, 782015431
Offset: 1
Examples
The smallest n for which b(n) as defined in the Comments is strictly less than A091333(n) is 50221174, because 50221174 = (7*3^15 - 1)/2, which requires b(7) + 15*b(3) + 1 + 2 = 6 + 15*3 + 1 + 2 = 54 ones to express with these operations, whereas A091333(a(1)) = A005245(a(1)) = 55 by virtue of the minimal expression 50221174 = 3(2*3*5(2*2*3(3*2+1)(3^4(3^4+1)+1)+1)+1)+1 requiring 3+2+3+5+2+2+3+3+2+1+3*4+3*4+1+1+1+1+1 = 55 ones. Thus the first element of the sequence a is 50221174. The next smallest n with b(n) < A091333(n) is 251105873 = (5*7*3^15 + 1)/2, requiring 59 ones, as compared with the minimal expression 2^2(3^2(3*2^2+1)(2*3(2^3*3^5(3^2*5+1)+1)+1)+1)+1 showing A091333(a(2)) = A005245(a(1)) = 60, so the second term of a is 251105873. The next three values with their respective minimal expressions: 346765253 = (3^14(2^4*3^2 + 1) + 1)/2 [60 ones] = 2((2^2*3^4+1)(2*3^2(2^3*3^2+1)(3^4*5+1)+1)+1)+1 [61 ones]. 387421583 = (3^7(2*3^11+1)+1)/2 [60 ones] = 2(2*5*7(2^2*3+1)(2^2*3^6(2^3*3^2+1)+1)+1)+1 [61 ones]. 394594943 = (3^15(2*3^3 + 1) + 1)/2 [60 ones] = 2*7(2*3^3(5(2^4*3^2-1)(3^6+1)+1)-1)+1 [61 ones] = 3(2^2*3+1)(2*3^2(2*7(2*3^3+1)(3^6+1)+1)+1)+2 [62 ones]. Thus n=394594943 is the least n such that b(n) < A091333(n) < A005245(n). Additional known values with their respective complexities: a(i) b(a(i)) A091333(a(i)) A005245(a(i)) --------- ------- ------------- ------------- 526392311 62 63 63 645706283 62 63 63 657658237 62 63 64 689544697 62 63 63 689544698 62 63 63 695921989 62 63 63 774842071 62 63 63 780158669 63 64 64 782015431 62 63 63 Thus 782015431 is the smallest value in this sequence at which b decreases from one entry to the next.
Links
- Glen Whitney, C program to discover numbers in this sequence
Comments