This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A348075 #31 Nov 11 2021 10:25:21 %S A348075 0,0,1,0,0,2,0,3,0,6,0,20,0,0,24,0,105,40,0,0,120,0,714,420,0,0,0,720, %T A348075 0,5845,2688,1260,0,0,0,5040,0,52632,22400,18144,0,0,0,0,40320,0, %U A348075 525105,223200,151200,72576,0,0,0,0,362880,0,5777090,2522520,1425600,1330560,0,0,0,0,0,3628800 %N A348075 Triangular array read by rows: T(n,k) is the number of derangements whose shortest cycle has exactly k nodes; n >= 1, 1 <= k <= n. %C A348075 For the statistic "length of the longest cycle", see A211871. %H A348075 Steven Finch, <a href="https://arxiv.org/abs/2111.05720">Permute, Graph, Map, Derange</a>, arXiv:2111.05720 [math.CO], 2021. %H A348075 D. Panario and B. Richmond, <a href="https://doi.org/10.1007/s00453-001-0047-1">Exact largest and smallest size of components</a>, Algorithmica, 31 (2001), 413-432. %F A348075 T(n,n) = A000142(n-1), n >= 2. %F A348075 T(n,2) = A158243(n), n >= 2. %F A348075 T(n,k) = A145877(n,k) for k >= 2. %e A348075 Triangle begins: %e A348075 0; %e A348075 0, 1; %e A348075 0, 0, 2; %e A348075 0, 3, 0, 6; %e A348075 0, 20, 0, 0, 24; %e A348075 0, 105, 40, 0, 0, 120; %e A348075 0, 714, 420, 0, 0, 0, 720; %e A348075 0, 5845, 2688, 1260, 0, 0, 0, 5040; %e A348075 0, 52632, 22400, 18144, 0, 0, 0, 0, 40320; %e A348075 ... %p A348075 b:= proc(n, m) option remember; `if`(n=0, x^m, add((j-1)!* %p A348075 b(n-j, min(m, j))*binomial(n-1, j-1), j=2..n)) %p A348075 end: %p A348075 T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b(n$2)): %p A348075 seq(T(n), n=1..12); # _Alois P. Heinz_, Sep 27 2021 %t A348075 b[n_, m_] := b[n, m] = If[n == 0, x^m, Sum[(j - 1)!* %t A348075 b[n - j, Min[m, j]]*Binomial[n - 1, j - 1], {j, 2, n}]]; %t A348075 T[n_] := If[n == 1, {0}, CoefficientList[b[n, n], x] // Rest]; %t A348075 Table[T[n], {n, 1, 12}] // Flatten (* _Jean-François Alcover_, Oct 03 2021, after _Alois P. Heinz_ *) %Y A348075 Row sums give A000166, n >= 1. %Y A348075 Right border gives A000142. %Y A348075 Column 1 gives A000004. %Y A348075 Column 2 gives A158243. %Y A348075 Cf. A145877, A211871. %K A348075 nonn,tabl %O A348075 1,6 %A A348075 _Steven Finch_, Sep 27 2021