This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A348076 #13 Sep 28 2021 08:33:46 %S A348076 44,75,98,116,147,171,175,207,244,332,368,387,404,507,548,603,604,656, %T A348076 724,800,832,844,847,891,908,931,963,1052,1075,1083,1124,1250,1251, %U A348076 1323,1324,1412,1467,1556,1587,1675,1772,1791,2096,2224,2312,2348,2367,2511,2523 %N A348076 Number k such that k and k+1 both have an equal number of even and odd exponents in their prime factorization (A187039). %C A348076 First differs from A049103 and A074172 at n=7. %H A348076 Amiram Eldar, <a href="/A348076/b348076.txt">Table of n, a(n) for n = 1..10000</a> %e A348076 44 is a term since 44 = 2^2 * 11 and 44 + 1 = 45 = 3^2 * 5 both have one even and one odd exponent in their prime factorization. %t A348076 q[n_] := n == 1 || Count[(e = FactorInteger[n][[;; , 2]]), _?OddQ] == Count[e, _?EvenQ]; Select[Range[2500], q[#] && q[# + 1] &] %o A348076 (Python) %o A348076 from sympy import factorint %o A348076 def aupto(limit): %o A348076 alst, cond = [], False %o A348076 for nxtk in range(3, limit+2): %o A348076 evenodd = [0, 0] %o A348076 for e in factorint(nxtk).values(): %o A348076 evenodd[e%2] += 1 %o A348076 nxtcond = (evenodd[0] == evenodd[1]) %o A348076 if cond and nxtcond: %o A348076 alst.append(nxtk-1) %o A348076 cond = nxtcond %o A348076 return alst %o A348076 print(aupto(2523)) # _Michael S. Branicky_, Sep 27 2021 %Y A348076 Subsequence of A187039. %Y A348076 A074172 is a subsequence. %Y A348076 Cf. A049103. %K A348076 nonn %O A348076 1,1 %A A348076 _Amiram Eldar_, Sep 27 2021