This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A348077 #11 Sep 28 2021 08:34:01 %S A348077 603,1250,1323,2523,4203,4923,4948,7442,10467,12591,18027,20402,21123, %T A348077 23823,31507,31850,36162,40327,54475,54511,55323,58923,63747,64386, %U A348077 71523,73204,79011,83151,85291,88047,97675,103923,104211,118323,120787,122571,124891,126927 %N A348077 Starts of runs of 3 consecutive numbers that have an equal number of even and odd exponents in their prime factorization (A187039). %H A348077 Amiram Eldar, <a href="/A348077/b348077.txt">Table of n, a(n) for n = 1..10000</a> %e A348077 603 is a term since 603 = 3^2 * 67, 603 + 1 = 604 = 2^2 * 151 and 603 + 2 = 605 = 5 * 11^2 all have one even and one odd exponent in their prime factorization. %t A348077 q[n_] := n == 1 || Count[(e = FactorInteger[n][[;; , 2]]), _?OddQ] == Count[e, _?EvenQ]; v = q /@ Range[3]; seq = {}; Do[v = Append[Drop[v, 1], q[k]]; If[And @@ v, AppendTo[seq, k - 2]], {k, 4, 130000}]; seq %o A348077 (Python) %o A348077 from sympy import factorint %o A348077 def aupto(limit): %o A348077 alst, condvec = [], [False, False, False] %o A348077 for kp2 in range(4, limit+3): %o A348077 evenodd = [0, 0] %o A348077 for e in factorint(kp2).values(): %o A348077 evenodd[e%2] += 1 %o A348077 condvec = condvec[1:] + [evenodd[0] == evenodd[1]] %o A348077 if all(condvec): %o A348077 alst.append(kp2-2) %o A348077 return alst %o A348077 print(aupto(126927)) # _Michael S. Branicky_, Sep 27 2021 %Y A348077 Subsequence of A187039 and A348076. %K A348077 nonn %O A348077 1,1 %A A348077 _Amiram Eldar_, Sep 27 2021