A348078 Starts of runs of 4 consecutive numbers that have an equal number of even and odd exponents in their prime factorization (A187039).
906596, 1141550, 1243275, 12133673, 13852924, 19293209, 20738672, 22997761, 23542001, 26587348, 30731822, 31237450, 39987773, 41419024, 43627148, 54040975, 54652148, 56487148, 70289225, 75855625, 77449300, 79677772, 80665072, 82126448, 91420721, 93883850, 95162849
Offset: 1
Keywords
Examples
906596 is a term since 906596 = 2^2 * 226649, 906596 + 1 = 906597 = 3^2 * 100733, 906596 + 2 = 906598 = 2 * 7^2 * 11 * 29^2 and 906596 + 3 = 906599 = 71 * 113^2 all have an equal number of even and odd exponents in their prime factorization.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
q[n_] := n == 1 || Count[(e = FactorInteger[n][[;; , 2]]), ?OddQ] == Count[e, ?EvenQ]; v = q /@ Range[4]; seq = {}; Do[v = Append[Drop[v, 1], q[k]]; If[And @@ v, AppendTo[seq, k - 3]], {k, 5, 2*10^7}]; seq
-
Python
from sympy import factorint def cond(n): evenodd = [0, 0] for e in factorint(n).values(): evenodd[e%2] += 1 return evenodd[0] == evenodd[1] def afind(limit, startk=5): condvec = [cond(startk+i) for i in range(4)] for kp3 in range(startk+3, limit+4): condvec = condvec[1:] + [cond(kp3)] if all(condvec): print(kp3-3, end=", ") afind(125*10**4) # Michael S. Branicky, Sep 27 2021