A348079 Starts of runs of 5 consecutive numbers that have an equal number of even and odd exponents in their prime factorization (A187039).
792007675, 2513546971, 2820448771, 3201296272, 4742326672, 4894282924, 5462510272, 5664816448, 6947006272, 7814337424, 8784450448, 9085360624, 10147712524, 10246365547, 11537724975, 11861786572, 11907710548, 12456672496, 13338112048, 13510075471, 13931933948
Offset: 1
Keywords
Examples
792007675 is a term since 792007675 = 2^2 * 31680307, 792007675 + 1 = 792007676 = 2^2 * 198001919, 792007675 + 2 = 792007677 = 3^2 * 88000853, 792007675 + 3 = 792007678 = 2 * 7^2 * 11^2 * 66791 and 792007675 + 4 = 792007679 = 17^2 * 2740511 all have an equal number of even and odd exponents in their prime factorization.
Programs
-
Mathematica
q[n_] := n == 1 || Count[(e = FactorInteger[n][[;; , 2]]), ?OddQ] == Count[e, ?EvenQ]; v = q /@ Range[5]; seq = {}; Do[v = Append[Drop[v, 1], q[k]]; If[And @@ v, AppendTo[seq, k - 4]], {k, 6, 3*10^9}]; seq
-
Python
from sympy import factorint def cond(n): evenodd = [0, 0] for e in factorint(n).values(): evenodd[e%2] += 1 return evenodd[0] == evenodd[1] def afind(limit, startk=6): condvec = [cond(startk+i) for i in range(5)] for kp4 in range(startk+4, limit+5): condvec = condvec[1:] + [cond(kp4)] if all(condvec): print(kp4-4, end=", ") afind(10**9) # Michael S. Branicky, Sep 27 2021