cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348079 Starts of runs of 5 consecutive numbers that have an equal number of even and odd exponents in their prime factorization (A187039).

Original entry on oeis.org

792007675, 2513546971, 2820448771, 3201296272, 4742326672, 4894282924, 5462510272, 5664816448, 6947006272, 7814337424, 8784450448, 9085360624, 10147712524, 10246365547, 11537724975, 11861786572, 11907710548, 12456672496, 13338112048, 13510075471, 13931933948
Offset: 1

Views

Author

Amiram Eldar, Sep 27 2021

Keywords

Examples

			792007675 is a term since 792007675 = 2^2 * 31680307, 792007675 + 1 = 792007676 = 2^2 * 198001919, 792007675 + 2 = 792007677 = 3^2 * 88000853, 792007675 + 3 = 792007678 = 2 * 7^2 * 11^2 * 66791 and 792007675 + 4 = 792007679 = 17^2 * 2740511 all have an equal number of even and odd exponents in their prime factorization.
		

Crossrefs

Subsequence of A187039, A348076, A348077 and A348078.

Programs

  • Mathematica
    q[n_] := n == 1 || Count[(e = FactorInteger[n][[;; , 2]]), ?OddQ] == Count[e, ?EvenQ]; v = q /@ Range[5]; seq = {}; Do[v = Append[Drop[v, 1], q[k]]; If[And @@ v, AppendTo[seq, k - 4]], {k, 6, 3*10^9}]; seq
  • Python
    from sympy import factorint
    def cond(n):
        evenodd = [0, 0]
        for e in factorint(n).values():
            evenodd[e%2] += 1
        return evenodd[0] == evenodd[1]
    def afind(limit, startk=6):
        condvec = [cond(startk+i) for i in range(5)]
        for kp4 in range(startk+4, limit+5):
            condvec = condvec[1:] + [cond(kp4)]
            if all(condvec):
                print(kp4-4, end=", ")
    afind(10**9) # Michael S. Branicky, Sep 27 2021