This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A348092 #12 Jun 14 2024 22:31:11 %S A348092 2,4,12,24,48,144,1440,2880,120960,1451520,87091200,1902071808000, %T A348092 15184923989114880000, %U A348092 808017424794512875886459904961710757005754368000000000 %N A348092 Unique values, or record values, of A343743. %C A348092 Every term in this sequence except the last is a number of least prime signature (A025487). %C A348092 In the following table, when the order of the Monster group is written in base a(n), it has exactly z zeros, s significant digits, and d = s + z total digits. %C A348092 n z s d %C A348092 -- -- --- --- %C A348092 1 46 134 180 %C A348092 2 23 67 90 %C A348092 3 20 30 50 %C A348092 4 15 25 40 %C A348092 5 11 22 33 %C A348092 6 10 15 25 %C A348092 7 9 9 18 %C A348092 8 7 9 16 %C A348092 9 6 5 11 %C A348092 10 5 4 9 %C A348092 11 4 3 7 %C A348092 12 3 2 5 %C A348092 13 2 1 3 %C A348092 14 1 1 2 %C A348092 a(n) is the largest natural number b such that the order of the Monster group is divisible by b^z. %D A348092 J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites]. %D A348092 J. H. Conway, N. J. A. Sloane, Sphere Packings, Lattices, and Groups. Springer, 3rd ed., 1999. %F A348092 a(n) = Product_{k=1..20} prime(k)^floor(A051161(k)/z(n)). %t A348092 f = FactorInteger[MonsterGroupM[] // GroupOrder]; DeleteDuplicates@ Table[Times @@ ((First[#]^Floor[Last[#]/z]) & /@ f), {z, Max[f[[;; , 2]]], 1, -1}] (* _Amiram Eldar_, Sep 30 2021 *) %Y A348092 Cf. A051161, A343743. %K A348092 nonn,fini,full %O A348092 1,1 %A A348092 _Hal M. Switkay_, Sep 29 2021