cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348094 If the Collatz trajectory of n reaches 1, say after k steps, and there is an integer m > n such that T^i(m) and T^i(n) have the same parity for i = 0..k (where T^i denotes the i-th iterate of the Collatz map A006370), then a(n) is the least such m, otherwise a(n) is -1.

Original entry on oeis.org

2, 4, 35, 8, 21, 70, 2055, 16, 8201, 42, 1035, 140, 141, 4110, 4111, 32, 529, 16402, 16403, 84, 85, 2070, 2071, 280, 65561, 282, 1180591620717411303451, 8220, 8221, 8222, 147573952589676412959, 64, 262177, 1058, 1059, 32804, 32805, 32806, 8388647, 168
Offset: 1

Views

Author

Rémy Sigrist, Sep 29 2021

Keywords

Comments

When a(n) > 0, the binary expansion of A125711(n) is a prefix of that of A125711(a(n)).

Examples

			The first terms, alongside the binary representations of A125711(n) and of A125711(a(n)), are:
  n  a(n)  h(n)               h(a(n))
  -  ----  -----------------  --------------------------------------
  1     2                  1                                      11
  2     4                 11                                     111
  3    35           10101111                          10101111101111
  4     8                111                                    1111
  5    21             101111                                10111111
  6    70          110101111                         110101111101111
  7  2055  10101011011101111  10101011011101111110111010101111101111
  8    16               1111                                   11111
		

Crossrefs

Programs

  • Mathematica
    A348094[n_] := n+2^(Length[NestWhileList[If[OddQ[#], 3#+1, #]/2 &, n, #>1 &]]-1);
    Array[A348094, 50] (* Paolo Xausa, Apr 05 2024 *)
  • PARI
    a(n) = { my (h=0, r=n); while (r>1, if (r%2, r=3*r+1, r=r/2; h++)); n+2^h }

Formula

a(2^k) = 2^(k+1) for any k >= 0.
a(n) = n + 2^A006666(n) when A006666(n) >= 0.