A348099 Starts of runs of 3 consecutive numbers that have an equal number of unitary and nonunitary prime divisors (A348097).
423, 603, 1250, 1375, 2007, 2523, 2527, 3175, 4075, 4203, 4374, 4923, 4948, 7442, 8991, 10375, 10467, 12591, 18027, 20402, 20575, 22023, 22687, 23823, 26071, 28375, 30231, 31507, 31850, 33271, 34623, 35574, 36162, 37348, 40023, 49975, 50274, 54475, 54511, 55323
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
q[n_] := n == 1 || Count[(e = FactorInteger[n][[;; , 2]]), 1] == Length[e]/2; v = q /@ Range[3]; seq = {}; Do[v = Append[Drop[v, 1], q[k]]; If[And @@ v, AppendTo[seq, k - 2]], {k, 4, 10^5}]; seq
Formula
423 is a term since 423 = 3^2 * 47, 423 + 1 = 424 = 2^3 * 53 and 423 + 2 = 425 = 5^2 * 17 all have one unitary prime divisor and one nonunitary prime divisor.