A348115 Irregular triangle read by rows: T(n, k) is the number of chains of subspaces 0 < V_1 < ... < V_r = (F_4)^n, counted up to coordinate permutation, with dimension increments given by (any fixed permutation of) the parts of the k-th partition of n in Abramowitz-Stegun order.
1, 1, 3, 1, 7, 24, 1, 12, 31, 117, 469, 1, 19, 111, 458, 1435, 6356, 28753, 1, 29, 361, 964, 1579, 15266, 55470, 71660, 264300, 1267174, 6105030, 1, 41, 1068, 8042, 4886, 145628, 494779, 1952843, 705790, 9589197, 38323695, 47157299, 188963325, 932529235
Offset: 1
Examples
For L = (1, 1, 1), there are 105 (= 21 * 5) = A347487(3, 3) subspace chains 0 < V_1 < V_2 < (F_4)^3. The permutations of the three coordinates classify them into 24 = T(3, 3) orbits. T(3, 2) = 7 refers to partition (2, 1) and counts subspace chains in (F_4)^2 with dimensions (0, 2, 3), i.e., 2-dimensional subspaces. It also counts chains with dimensions (0, 1, 3), i.e., 1-dimensional subspaces. Triangle begins: k: 1 2 3 4 5 6 7 ---------------------------- n=1: 1 n=2: 1 3 n=3: 1 7 24 n=4: 1 12 31 117 469 n=5: 1 19 111 458 1435 6356 28753
Links
- Álvar Ibeas, First 16 rows, with gaps
- Álvar Ibeas, Pseudo-column T(n, L), where L = (n-2, 1, 1), up to n=100
- Álvar Ibeas, Pseudo-column T(n, L), where L = (n-3, 2, 1), up to n=100
- Álvar Ibeas, Pseudo-column T(n, L), where L = (n-3, 1, 1, 1), up to n=100
- Álvar Ibeas, Pseudo-column T(n, L), where L = (n-4, 3, 1), up to n=100
- Álvar Ibeas, Pseudo-column T(n, L), where L = (n-4, 2, 2), up to n=100
- Álvar Ibeas, Pseudo-column T(n, L), where L = (n-4, 2, 1, 1), up to n=100
- Álvar Ibeas, Pseudo-column T(n, L), where L = (n-4, 1, 1, 1, 1), up to n=100
Comments