cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348135 Irregular triangle T(n, k), n > 0, k = 1..A067399(n), read by rows; the n-th row gives, in ascending order, the distinct integers k such that A067138(k, m) = n for some m.

This page as a plain text file.
%I A348135 #11 Oct 09 2021 06:30:27
%S A348135 1,1,2,1,3,1,2,4,1,5,1,2,3,6,1,3,7,1,2,4,8,1,9,1,2,5,10,1,11,1,2,3,4,
%T A348135 6,12,1,13,1,2,3,6,7,14,1,3,5,7,15,1,2,4,8,16,1,17,1,2,9,18,1,19,1,2,
%U A348135 4,5,10,20,1,5,21,1,2,11,22,1,23,1,2,3,4,6,8,12,24
%N A348135 Irregular triangle T(n, k), n > 0, k = 1..A067399(n), read by rows; the n-th row gives, in ascending order, the distinct integers k such that A067138(k, m) = n for some m.
%C A348135 The n-th row corresponds to the divisors of n in OR-numbral arithmetic.
%H A348135 Rémy Sigrist, <a href="/A348135/b348135.txt">Table of n, a(n) for n = 1..7412</a> (first 1024 rows flattened)
%H A348135 Rémy Sigrist, <a href="/A348135/a348135.gp.txt">PARI program for A348135</a>
%H A348135 <a href="/index/Di#dismal">Index entries for sequences related to dismal (or lunar) arithmetic</a>
%F A348135 T(n, 1) = 1.
%F A348135 T(n, A067399(n)) = n.
%e A348135 The triangle starts:
%e A348135       1:   [1]
%e A348135       2:   [1, 2]
%e A348135       3:   [1, 3]
%e A348135       4:   [1, 2, 4]
%e A348135       5:   [1, 5]
%e A348135       6:   [1, 2, 3, 6]
%e A348135       7:   [1, 3, 7]
%e A348135       8:   [1, 2, 4, 8]
%e A348135       9:   [1, 9]
%e A348135      10:   [1, 2, 5, 10]
%e A348135      11:   [1, 11]
%e A348135      12:   [1, 2, 3, 4, 6, 12]
%e A348135      13:   [1, 13]
%e A348135      14:   [1, 2, 3, 6, 7, 14]
%e A348135      15:   [1, 3, 5, 7, 15]
%e A348135      16:   [1, 2, 4, 8, 16]
%o A348135 (PARI) See Links section.
%Y A348135 Cf. A067138, A067399, A346795.
%K A348135 nonn,tabf
%O A348135 1,3
%A A348135 _Rémy Sigrist_, Oct 02 2021