This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A348162 #25 Nov 20 2021 20:41:54 %S A348162 0,0,2,38,9782,641083190,2753431335706502966, %T A348162 50791843174310108512166439539235563318, %U A348162 17283568615631356151658578642396687258566665947274335391075779120894446085942 %N A348162 a(n) is the previous term in binary with 0's and 1's put alternatingly before each digit, starting with 0. %C A348162 The next term is too large to include. %C A348162 The actual sequence in binary is 0, 00, 0010, 00100110, ... The 0s at the start of each term are required for the sequence to work. %e A348162 a(2) = 0010; %e A348162 a(3) = (0010 + 0101 -> 00100110); %e A348162 a(4) = (00100110 + 01010101 = 0010011000110110). %e A348162 Full explanation: %e A348162 Say we have the term 0010. %e A348162 We get an equal length binary number of alternating 0s and 1s. %e A348162 In this case it would be 0101, and we interlace them like so: %e A348162 0 1 0 1 %e A348162 0010 + 0101 -> 0 0 1 0 -> 00100110 %o A348162 (Python) %o A348162 def combine(a,b): %o A348162 c = '' %o A348162 for i in range(max(len(a),len(b))*2): %o A348162 if i%2 == 0: %o A348162 if len(a) > i/2: %o A348162 c += (a[int(i/2)]) %o A348162 else: %o A348162 if len(b) > i/2: %o A348162 c += (b[int(i/2)]) %o A348162 return c %o A348162 x = '0' %o A348162 while True: %o A348162 x = combine(combine(len(x)*'0',len(x)*'1')[:len(x)],x) %o A348162 (Python) %o A348162 from itertools import islice %o A348162 def A348162(): # generator of terms %o A348162 s = '0' %o A348162 while True: %o A348162 yield int(s,2) %o A348162 s = ''.join(x+y for x, y in zip('01'*((len(s)+1)//2),s)) %o A348162 A348162_list = list(islice(A348162(),9)) # _Chai Wah Wu_, Nov 19 2021 %o A348162 (PARI) a(n) = my(ret=0,s=1); for(i=2,n, ret += 1<<s + ret<<(s<<=1)); ret; \\ _Kevin Ryde_, Nov 19 2021 %Y A348162 Cf. A014707 (bits of terms), A337580. %K A348162 nonn,base %O A348162 0,3 %A A348162 _Edward Green_, Oct 03 2021