cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348169 Positive integers which can be represented as A*(x^2 + y^2 + z^2) = B*(x*y + x*z + y*z) with positive integers x, y, z, A, B and gcd(A,B)=1.

Original entry on oeis.org

3, 12, 18, 27, 30, 42, 48, 72, 75, 77, 98, 108, 120, 147, 154, 162, 168, 192, 243, 255, 260, 264, 270, 272, 273, 285, 288, 297, 300, 308, 338, 363, 378, 392, 432, 450, 462, 480, 490, 494, 507, 510, 513, 588, 616, 630, 648, 672, 675, 693, 702, 714, 722, 750, 754, 768, 798
Offset: 1

Views

Author

Alexander Kritov, Oct 04 2021

Keywords

Comments

The sequence represents a generalization of cases A033428 (k=1), A347960 (k=2), A347969 (k=5) with all possible k given by A331605. Instead of integer k, it utilizes the ratio B/A.

Examples

			a(6)=42: the quintuple (x,y,z) A,B is 1,2,4 (2,3) because 42 = 2*(1^2 + 2^2 + 4^2) = 3*(1*4 + 1*2 + 2*4).
  a(n)    (x,y,z)     A,  B
    3     (1,1,1)     1,  1
   12     (2,2,2)     1,  1
   18     (1,1,4)     1,  2
   27     (3,3,3)     1,  1
   30     (1,1,2)     5,  6
   42     (1,2,4)     2,  3
   48     (4,4,4)     1,  1
   72     (1,2,2)     8,  9  [also (2,2,8) 1, 2]
   75     (5,5,5)     1,  1
   77     (1,1,3)     7, 11
   98     (1,4,9)     1,  2
  108     (6,6,6)     1,  1
  120     (2,2,4)     5,  6
  147     (7,7,7)     1,  1
  154     (1,2,3)    11, 14
  162     (3,3,12)    1,  2
  168     (2,4,8)     2,  3
  192     (8,8,8)     1,  1
  243     (9,9,9)     1,  1
  255     (1,1,7)     5, 17
  260     (2,5,6)     4,  5
  264     (1,4,4)     8, 11
  270     (2,5,5)     5,  6
  272     (2,2,3)    16, 17
  288     (4,4,2)     8,  9  [also (4,4,16) 1, 2]
		

Crossrefs

The sequence contains A033428 (A=B=1), A347969 (B=2*A), A347960 (B=5*A).

Programs

  • C
    /* See links */
    
  • Python
    from itertools import islice, count
    from math import gcd
    from sympy import divisors, integer_nthroot
    def A348169(): # generator of terms
        for n in count(1):
            for d in divisors(n,generator=False):
                x, x2 = 1, 1
                while 3*x2 <= d:
                    y, y2 = x, x2
                    z2 = d-x2-y2
                    while z2 >= y2:
                        z, w = integer_nthroot(z2,2)
                        if w:
                            A = n//d
                            B, u = divmod(n,x*(y+z)+y*z)
                            if u == 0 and gcd(A,B) == 1:
                                yield n
                                break
                        y += 1
                        y2 += 2*y-1
                        z2 -= 2*y-1
                    else:
                        x += 1
                        x2 += 2*x-1
                        continue
                    break
                else:
                    continue
                break
    A348169_list = list(islice(A348169(),57)) # Chai Wah Wu, Nov 26 2021