This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A348171 #23 Apr 13 2025 01:46:42 %S A348171 1,6,3,60,78,9,120,7620,15,21,360,28920,315,75,81,840,261720,1326,495, %T A348171 63,147,3360,1422120,3465,22542,525,189,729,2520,22622880,17325,44574, %U A348171 5005,1275,357,903,5040,12728520,45045,199578,6435,16575,1287,1197,3025,10080,50858640,51975,7734558,34034,131835,2145,3861,2499,6875 %N A348171 Square array read by upward antidiagonals in which T(w,p) is the smallest number k whose symmetric representation of sigma(k) consists of p parts with maximum width w occurring in at least one of its p parts. %C A348171 The first row of the table below is A318843 and the first column is A250070. %C A348171 T(1,k+1) <= 3^k, for all k>=0, since for k=2j the (j+1)-st part in the symmetric representation of sigma(3^k) extends across the diagonal, and for k=2j+1 the (j+1)-st part is completed before the diagonal. %C A348171 The data computed so far for a partially filled table of 15 rows and 15 columns, show that all rows, all columns (except column 4 for n <= 6 *10^7), and the diagonal are nonmonotonic. %F A348171 a((w+p-2)(w+p-1)/2 + p) = T(w,p), for all w, p >= 1. %F A348171 T(w(n), p(n)) = a(n), for all n >= 1, where p(n) = n - r(n-1) * (r(n-1) + 1)/2, w(n) = r(n-1) - p(n) + 2, and r(n) = floor((sqrt(8*n+1) - 1)/2). %e A348171 The 10x10 section of the table with dashes indicating values greater than 6*10^7; rows w denote the maximum width and columns p the number of parts in the symmetric representation of sigma(T(w,p)). %e A348171 w\p | 1 2 3 4 5 6 7 8 9 ... %e A348171 ---------------------------------------------------------------------------- %e A348171 1 | 1 3 9 21 81 147 729 903 3025 %e A348171 2 | 6 78 15 75 63 189 357 1197 2499 %e A348171 3 | 60 7620 315 495 525 1275 1287 3861 3591 %e A348171 4 | 120 28920 1326 22542 5005 16575 2145 29325 11583 %e A348171 5 | 360 261720 3465 44574 6435 131835 76125 24225 82593 %e A348171 6 | 840 1422120 17325 199578 34034 83655 196707 468027 62985 %e A348171 7 | 3360 22622880 45045 7734558 153153 442442 314925 1108965 471975 %e A348171 8 | 2520 12728520 51975 - 205275 2067065 1429275 2359875 557175 %e A348171 9 | 5040 50858640 225225 - 646646 2863718 2395197 5353725 2785875 %e A348171 10| 10080 - 405405 - 1990989 2124694 6500375 36535499 7753875 %e A348171 ... %e A348171 The symmetric representation of sigma for T(2,3) = 15 consists of the three parts (8, 8, 8) of maximum widths (1, 2, 1), and that of T(3,3) = 315 consists of the three parts (158, 308, 158) of maximum widths (1, 3, 1). %t A348171 (* function a341969 is defined in A341969 *) %t A348171 a348171[n_, {w_, p_}] := Module[{list=Table[0, {i, w}, {j, p}], k, s, c, u}, For[k=1, k<=n, k++, s=Map[Max, Select[SplitBy[a341969[k], # != 0 &], #[[1]] != 0 &]]; c = Length[s]; u = Max[s]; If[u<=w && c<=p, If[list[[u, c]] == 0, list[[u, c]] = k ]]]; list] %t A348171 table=a348171[60000000, {15, 15}] (* 15x15 table; very long computation time *) %t A348171 p[n_] := n-row[n-1](row[n-1]+1)/2 %t A348171 w[n_] := row[n-1]-p[n]+2 %t A348171 Map[table[[w[#], p[#]]]&, Range[55]] (* sequence data *) %Y A348171 Cf. A237048, A237270, A237271, A237591, A237593, A238443, A239663, A249223, A250070, A262045, A318843, A341969, A341970, A341971, A347979, A347980, A348142. %K A348171 nonn,tabl %O A348171 1,2 %A A348171 _Hartmut F. W. Hoft_, Oct 04 2021