cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348180 Irregular triangle read by rows: T(n, k) is the number of chains of subspaces 0 < V_1 < ... < V_r = (F_5)^n, counted up to coordinate permutation, with dimension increments given by (any fixed permutation of) the parts of the k-th partition of n in Abramowitz-Stegun order.

This page as a plain text file.
%I A348180 #10 Oct 06 2021 19:19:29
%S A348180 1,1,4,1,9,40,1,19,56,279,1428,1,33,289,1561,6345,35689,202421,1,55,
%T A348180 1358,4836,7652,129505,615395,757560,3620918,21341449,125952538,1,85,
%U A348180 5771,80605,33435,2362185,10691648,53822709,14039541,321134138,1622410155,1916573757,9688635876,57866763847
%N A348180 Irregular triangle read by rows: T(n, k) is the number of chains of subspaces 0 < V_1 < ... < V_r = (F_5)^n, counted up to coordinate permutation, with dimension increments given by (any fixed permutation of) the parts of the k-th partition of n in Abramowitz-Stegun order.
%C A348180 A permutation on the list of dimension increments does not modify the number of subspace chains.
%C A348180 The length of the enumerated chains is r = len(L), where L is the parameter partition.
%H A348180 Álvar Ibeas, <a href="/A348180/a348180.txt">First 16 rows, with gaps</a>
%H A348180 Álvar Ibeas, <a href="/A348180/a348180_1.txt">Pseudo-column T(n, L), where L = (n-2, 1, 1), up to n=100</a>
%H A348180 Álvar Ibeas, <a href="/A348180/a348180_2.txt">Pseudo-column T(n, L), where L = (n-3, 2, 1), up to n=100</a>
%H A348180 Álvar Ibeas, <a href="/A348180/a348180_3.txt">Pseudo-column T(n, L), where L = (n-3, 1, 1, 1), up to n=100</a>
%H A348180 Álvar Ibeas, <a href="/A348180/a348180_4.txt">Pseudo-column T(n, L), where L = (n-4, 3, 1), up to n=100</a>
%H A348180 Álvar Ibeas, <a href="/A348180/a348180_5.txt">Pseudo-column T(n, L), where L = (n-4, 2, 2), up to n=100</a>
%H A348180 Álvar Ibeas, <a href="/A348180/a348180_6.txt">Pseudo-column T(n, L), where L = (n-4, 2, 1, 1), up to n=100</a>
%H A348180 Álvar Ibeas, <a href="/A348180/a348180_7.txt">Pseudo-column T(n, L), where L = (n-4, 1, 1, 1, 1), up to n=100</a>
%F A348180 If the k-th partition of n in A-St is L = (a, n-a), then T(n, k) = A347972(n, a) = A347972(n, n-a).
%e A348180 For L = (1, 1, 1), there are 186 (= 31 * 6) = A347488(3, 3) subspace chains 0 < V_1 < V_2 < (F_5)^3.
%e A348180 The permutations of the three coordinates classify them into 40 = T(3, 3) orbits.
%e A348180 T(3, 2) = 9 refers to partition (2, 1) and counts subspace chains in (F_5)^2 with dimensions (0, 2, 3), i.e. 2-dimensional subspaces. It also counts chains with dimensions (0, 1, 3), i.e. 1-dimensional subspaces.
%e A348180 Triangle begins:
%e A348180   k:  1  2   3    4    5     6      7
%e A348180       -------------------------------
%e A348180 n=1:  1
%e A348180 n=2:  1  4
%e A348180 n=3:  1  9  40
%e A348180 n=4:  1 19  56  279 1428
%e A348180 n=5:  1 33 289 1561 6345 35689 202421
%Y A348180 Cf. A347972, A347488, A348113-A348115.
%K A348180 nonn,tabf
%O A348180 1,3
%A A348180 _Álvar Ibeas_, Oct 05 2021