cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348189 Pseudo-involutory Riordan companion of 1 + 2*x*M(x), where M(x) is the g.f. of A001006.

This page as a plain text file.
%I A348189 #21 Feb 20 2025 03:22:06
%S A348189 1,0,0,2,0,6,8,24,60,148,396,1026,2744,7350,19872,54102,148104,407682,
%T A348189 1127328,3130542,8726256,24407634,68482776,192698124,543642476,
%U A348189 1537443024,4357677516,12376868254,35221087656,100409367690,286730523104,820078634232,2348966799132
%N A348189 Pseudo-involutory Riordan companion of 1 + 2*x*M(x), where M(x) is the g.f. of A001006.
%H A348189 Alexander Burstein and Louis W. Shapiro, <a href="https://arxiv.org/abs/2112.11595">Pseudo-involutions in the Riordan group</a>, arXiv:2112.11595 [math.CO], 2021.
%H A348189 Alexander Burstein and Louis W. Shapiro, <a href="https://arxiv.org/abs/2502.13673">Pseudo-involutions in the Riordan group and Chebyshev polynomials</a>, arXiv:2502.13673 [math.CO], 2025.
%F A348189 G.f.: A(x) = (1 - sqrt(1 - 2*x - 3*x^2))/(x*(2 + x - sqrt(1 - 2*x - 3*x^2))).
%F A348189 If M(x) is the g.f. of A001006, then A(x) = (1 + 2*x*M(x))/(1 + 2*x + 2*x^2*M(x)).
%F A348189 Let M(x) be the g.f. of A001006 and F(x) = 1 + 2*x*M(x) (equivalently, x*F(x) = g.f. of A007971). Then F(-x*A(x)) = 1/F(x).
%F A348189 A(-x*A(x)) = 1/A(x).
%F A348189 G.f.: Let F(x) be the g.f. of A107264, then A(x) = 1 + 2*x^3*A(x)^2*F(x^2*A(x)). - _Alexander Burstein_, Feb 14 2022
%t A348189 a[n_] := SeriesCoefficient[(1 - Sqrt[1-2*x-3*x^2])/(x * (2 + x - Sqrt[1-2*x-3*x^2])), {x, 0, n}]; Array[a, 33, 0] (* _Amiram Eldar_, Oct 06 2021 *)
%o A348189 (PARI) my(x='x+O('x^35)); Vec((1-sqrt(1-2*x-3*x^2))/(x*(2+x-sqrt(1-2*x-3*x^2)))) \\ _Michel Marcus_, Oct 06 2021
%Y A348189 Cf. A001006, A007971, A086246.
%K A348189 nonn
%O A348189 1,4
%A A348189 _Alexander Burstein_, Oct 06 2021