This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A348191 #22 Dec 28 2021 14:15:12 %S A348191 1,0,1,0,1,1,0,0,3,1,0,6,3,6,1,0,24,30,15,10,1,0,0,234,105,45,15,1,0, %T A348191 720,504,1134,315,105,21,1,0,5040,7020,5292,3969,840,210,28,1,0,0, %U A348191 89424,48572,29484,11529,2016,378,36,1,0,362880,299376,724140,275120,118125,29673,4410,630,45,1 %N A348191 Triangular array read by rows: T(n,k) is the number of cubic n-permutations possessing exactly k cycles; n >= 0, 0 <= k <= n. %C A348191 A permutation p in S_n is a cube if there exists q in S_n with q^3=p. %H A348191 Alois P. Heinz, <a href="/A348191/b348191.txt">Rows n = 0..150, flattened</a> %e A348191 The four cubic 3-permutations are (1, 2, 3) with three cycles (fixed points) and (1, 3, 2), (3, 2, 1) & (2, 1, 3), each with two cycles (a fixed point & a transposition). %e A348191 Triangle begins: %e A348191 [0] 1; %e A348191 [1] 0, 1; %e A348191 [2] 0, 1, 1; %e A348191 [3] 0, 0, 3, 1; %e A348191 [4] 0, 6, 3, 6, 1; %e A348191 [5] 0, 24, 30, 15, 10, 1; %e A348191 [6] 0, 0, 234, 105, 45, 15, 1; %e A348191 [7] 0, 720, 504, 1134, 315, 105, 21, 1; %p A348191 with(combinat): %p A348191 b:= proc(n, i) option remember; expand(`if`(n=0, 1, `if`(i<1, 0, %p A348191 add(`if`(irem(j, igcd(i, 3))<>0, 0, x^j*(i-1)!^j* %p A348191 multinomial(n, n-i*j, i$j)/j!*b(n-i*j, i-1)), j=0..n/i)))) %p A348191 end: %p A348191 T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n$2)): %p A348191 seq(T(n), n=0..10); # _Alois P. Heinz_, Nov 30 2021 %t A348191 multinomial[n_, k_List] := n!/Times @@ (k!); %t A348191 b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i<1, 0, %t A348191 Sum[If[Mod[j, GCD[i, 3]] != 0, 0, x^j*(i-1)!^j*multinomial[n, %t A348191 Join[{n-i*j}, Table[i, {j}]]]/j!*b[n-i*j, i-1]], {j, 0, n/i}]]]]; %t A348191 T[n_] := With[{p = b[n, n]}, Table[Coefficient[p, x, i], {i, 0, n}]]; %t A348191 Table[T[n], {n, 0, 10}] // Flatten (* _Jean-François Alcover_, Dec 28 2021, after _Alois P. Heinz_ *) %Y A348191 Columns k=0-1 give: A000007, |A194770|. %Y A348191 Row sums give A103619. %Y A348191 Cf. A246948. %K A348191 nonn,tabl %O A348191 0,9 %A A348191 _Steven Finch_, Nov 27 2021 %E A348191 More terms from _Alois P. Heinz_, Nov 30 2021