cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348211 Triangle read by rows giving coefficients of polynomials arising as numerators of certain Hilbert series.

This page as a plain text file.
%I A348211 #18 Feb 29 2024 01:45:04
%S A348211 1,1,1,1,3,1,1,11,11,1,1,31,90,31,1,1,85,554,554,85,1,1,225,2997,6559,
%T A348211 2997,225,1,1,595,15049,62755,62755,15049,595,1,1,1576,72496,527911,
%U A348211 985758,527911,72496,1576,1,1,4203,341166,4094762,12956604,12956604,4094762,341166,4203,1
%N A348211 Triangle read by rows giving coefficients of polynomials arising as numerators of certain Hilbert series.
%C A348211 This corrects 544 -> 554 in row 8 of A013561.
%C A348211 Write the g.f. of row n of A348210 as a rational polynomial nu(x)/(1-x)^(n-2). The triangle contains the coefficients [x^k] nu(x) in row n.
%H A348211 G. C. Greubel, <a href="/A348211/b348211.txt">Rows n = 3..53 of the triangle, flattened</a>
%H A348211 D.-N. Verma, <a href="/A012249/a012249.pdf">Towards Classifying Finite Point-Set Configurations</a>, 1997, Unpublished. [Scanned copy of annotated version of preprint given to me by the author in 1997. - _N. J. A. Sloane_, Oct 04 2021]
%F A348211 Sum_{k=0..n-3} T(n, k) = A012249(n-2) (row sums).
%F A348211 From _G. C. Greubel_, Feb 28 2024: (Start)
%F A348211 T(n, k) = [x^k]( (1-x)^(n-2) * Sum_{k=0..n-3} A(n,k)*x^k ), where A(n,k) is the array of A348210.
%F A348211 T(n, n-k) = T(n, k). (End)
%e A348211 Triangle begins:
%e A348211   1;
%e A348211   1,    1;
%e A348211   1,    3,     1;
%e A348211   1,   11,    11,      1;
%e A348211   1,   31,    90,     31,      1;
%e A348211   1,   85,   554,    554,     85,      1;
%e A348211   1,  225,  2997,   6559,   2997,    225,     1;
%e A348211   1,  595, 15049,  62755,  62755,  15049,   595,    1;
%e A348211   1, 1576, 72496, 527911, 985758, 527911, 72496, 1576,   1;
%p A348211 read("transforms"):
%p A348211 A348211_row := proc(n)
%p A348211     local x,b,opoly ;
%p A348211     opoly := n-2 ;
%p A348211     [seq(A348210(n,k),k=0..opoly-1)] ;
%p A348211     b := BINOMIALi(%) ;
%p A348211     add( op(i,b)*x^(i-1)*(1-x)^(opoly-i),i=1..nops(b)) ;
%p A348211     seq( coeff(%,x,i),i=0..opoly-1) ;
%p A348211 end proc:
%p A348211 for n from 3 to 12 do
%p A348211     print(A348211_row(n)) ;
%p A348211 end do: # _R. J. Mathar_, Oct 10 2021
%t A348211 A348210[n_, k_] := (-1/2)*Sum[(-1)^j*Binomial[n, j]* Binomial[(n-2*j)*k+n-j-2, n-3], {j, 0, Floor[(n-1)/2]}];
%t A348211 row[n_] := Switch[n, 3, {1}, 4, {1, 1}, _, FindGeneratingFunction[Table[A348210[n, k], {k, 0, n-2}], x] // Numerator // CoefficientList[#, x]& // Abs];
%t A348211 Table[row[n], {n, 3, 12}] // Flatten (* _Jean-François Alcover_, Apr 23 2023 *)
%o A348211 (Magma)
%o A348211 R<x>:=PowerSeriesRing(Rationals(), 50);
%o A348211 A:= func< n, k | (&+[(-1)^(j+1)*Binomial(n, j)*Binomial((n-2*j)*k+n-j-2, n-3)/2 : j in [0..Floor((n-1)/2)]]) >; // A=A348210
%o A348211 p:= func< n,x | (1-x)^(n-2)*(&+[A(n,k)*x^k: k in [0..n]]) >;
%o A348211 A348211:= func< n,k | Coefficient(R!( p(n,x) ), k) >;
%o A348211 [A348211(n,k): k in [0..n-3], n in [3..15]]; // _G. C. Greubel_, Feb 28 2024
%o A348211 (SageMath)
%o A348211 def A(n, k): return sum( (-1)^(j+1)*binomial(n, j)*binomial((n-2*j)*k+n-j-2, n-3) for j in range(1+(n-1)//2) )/2 # A = A348210
%o A348211 def p(n,x): return (1-x)^(n-2)*sum( A(n,k)*x^k for k in range(n+1) )
%o A348211 def A348211(n,k): return ( p(n,x) ).series(x, n+1).list()[k]
%o A348211 flatten([[A348211(n,k) for k in range(n-2)] for n in range(3,17)]) # _G. C. Greubel_, Feb 28 2024
%Y A348211 Cf. A012249 (row sums), A013561, A013630.
%K A348211 tabl,nonn
%O A348211 3,5
%A A348211 _R. J. Mathar_, Oct 07 2021