This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A348212 #30 Aug 28 2023 08:20:33 %S A348212 1,0,15,133,0,37851,1030367,0,1606008513,87656896891,0, %T A348212 452794797220965,41609568918940625 %N A348212 Number of transversals in a cyclic diagonal Latin square of order 2n+1. %C A348212 All cyclic diagonal Latin squares of order n have same number of transversals. A similar statement for diagonal transversals is not true (see A342998 and A342997). %C A348212 All broken diagonals and antidiagonals of cyclic Latin squares are transversals, so a(n) >= 2*n for all n > 1 for which cyclic diagonal Latin squares exist. - _Eduard I. Vatutin_, Mar 22 2022 %C A348212 All cyclic diagonal Latin squares are diagonal Latin squares, so A287645(2n+1) <= a(n) <= A287644(2n+1) for all orders in which cyclic diagonal Latin squares exist. - _Eduard I. Vatutin_, Mar 23 2022 %H A348212 Eduard I. Vatutin, <a href="https://vk.com/wall162891802_1407">About the number of transversals in cyclic Latin and cyclic diagonal Latin squares</a> (in Russian). %H A348212 <a href="https://oeis.org/index/La#Latin">Index entries for sequences related to Latin squares and rectangles</a>. %F A348212 a(n) = A006717(n) * A011655(n+1). %e A348212 A cyclic diagonal Latin square of order 5 %e A348212 0 1 2 3 4 %e A348212 2 3 4 0 1 %e A348212 4 0 1 2 3 %e A348212 1 2 3 4 0 %e A348212 3 4 0 1 2 %e A348212 has a(3)=15 transversals: %e A348212 0 . . . . 0 . . . . . 1 . . . . . . . 4 %e A348212 . 3 . . . . . . . 1 2 . . . . . 3 . . . %e A348212 . . 1 . . . . . 2 . . . . . 3 . . . 2 . %e A348212 . . . 4 . . . 3 . . . . . 4 . 1 . . . . %e A348212 . . . . 2 . 4 . . . . . 0 . . ... . . 0 . . %Y A348212 Cf. A006717, A011655, A287644, A287645, A338562, A342997, A342998. %K A348212 nonn,more,hard %O A348212 1,3 %A A348212 _Eduard I. Vatutin_, Oct 07 2021