This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A348220 #21 Oct 11 2021 18:42:40 %S A348220 2,2,0,2,2,1,2,4,1,-1,2,6,7,0,29,2,8,19,1,-1,-14,2,10,37,8,-1,1,1139, %T A348220 2,12,61,9,29,0,-37,-41,2,14,91,64,269,-1,1,8,32377,2,16,127,125,1079, %U A348220 14,1,-1,-119,-3956,2,18,169,72,2999,33,-37,0,127,9,2046263 %N A348220 Numerators of coefficients for numerical integration of certain differential systems (Array A(i,k) read by ascending antidiagonals). %C A348220 It can be noticed that the sequence A002681/A002682 shows as these 4 subsequences: A(i, 2i+2), -A(i, 2i+3), A(i+1, 2i+2) and A(i+2, 2i+3), for i >= 0. %C A348220 Columns: A007395, A005843, A003215 (numerators). %D A348220 Paul Curtz, Intégration numérique des systèmes différentiels à conditions initiales. Note no. 12 du Centre de Calcul Scientifique de l'Armement, page 127, 1969, Arcueil. Later CELAR. Now DGA Maitrise de l'Information 35170 Bruz. %F A348220 Numerators of A(i,k) where: %F A348220 A(i,k) = (1/k!)*Integral_(-1,1) Product(u+j, (j, -k+1 .. 0)) du for i=0. %F A348220 A(i,k) = A(i-1, k-1) + A(i-1, k) for i>0. %e A348220 Array begins: %e A348220 2, 0, 1/3, -1/3, 29/90, -14/45, 1139/3780, -41/140, ... %e A348220 2, 2, 1/3, 0, -1/90, 1/90, -37/3780, 8/945, ... %e A348220 2, 4, 7/3, 1/3, -1/90, 0, 1/756, -1/756, ... %e A348220 2, 6, 19/3, 8/3, 29/90, -1/90, 1/756, 0, ... %e A348220 2, 8, 37/3, 9, 269/90, 14/45, -37/3780, 1/756, ... %e A348220 2, 10, 61/3, 64/3, 1079/90, 33/10, 1139/3780, -8/945, ... %e A348220 2, 12, 91/3, 125/3, 2999/90, 688/45, 13613/3780, 41/140, ... %e A348220 2, 14, 127/3, 72, 6749/90, 875/18, 14281/756, 736/189, ... %e A348220 2, 16, 169/3, 343/3, 13229/90, 618/5, 51031/756, 17225/756, ... %e A348220 ... %t A348220 A[i_ /; i >= 0, k_ /; k >= 0] := A[i, k] = If[i == 0, (1/k!) Integrate[ Product[u+j, {j, -k+1, 0}], {u, -1, 1}], A[i-1, k-1] + A[i-1, k]]; %t A348220 A[_, _] = 0; %t A348220 Table[A[i-k, k] // Numerator, {i, 0, 10}, {k, 0, i}] // Flatten %o A348220 (PARI) array(nn) = {my(m = matrix(nn, nn)); for (k=0, nn-1, m[1, k+1] = bestappr(intnum(x=-1, 1, prod(j=1-k, 0, x+j)))/k!; ); for (j=1, nn-1, for (k=0, nn-1, m[j+1, k+1] = if (k>0, m[j,k], 0) + m[j, k+1];);); apply(numerator, m);} \\ _Michel Marcus_, Oct 08 2021 %Y A348220 Cf. A002681, A002682, A348221 (denominators). %Y A348220 Cf. A003215, A005843, A007395. %K A348220 frac,sign,tabl %O A348220 0,1 %A A348220 _Jean-François Alcover_ and _Paul Curtz_, Oct 08 2021