cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348220 Numerators of coefficients for numerical integration of certain differential systems (Array A(i,k) read by ascending antidiagonals).

This page as a plain text file.
%I A348220 #21 Oct 11 2021 18:42:40
%S A348220 2,2,0,2,2,1,2,4,1,-1,2,6,7,0,29,2,8,19,1,-1,-14,2,10,37,8,-1,1,1139,
%T A348220 2,12,61,9,29,0,-37,-41,2,14,91,64,269,-1,1,8,32377,2,16,127,125,1079,
%U A348220 14,1,-1,-119,-3956,2,18,169,72,2999,33,-37,0,127,9,2046263
%N A348220 Numerators of coefficients for numerical integration of certain differential systems (Array A(i,k) read by ascending antidiagonals).
%C A348220 It can be noticed that the sequence A002681/A002682 shows as these 4 subsequences: A(i, 2i+2), -A(i, 2i+3), A(i+1, 2i+2) and A(i+2, 2i+3), for i >= 0.
%C A348220 Columns: A007395, A005843, A003215 (numerators).
%D A348220 Paul Curtz, Intégration numérique des systèmes différentiels à conditions initiales. Note no. 12 du Centre de Calcul Scientifique de l'Armement, page 127, 1969, Arcueil. Later CELAR. Now DGA Maitrise de l'Information 35170 Bruz.
%F A348220 Numerators of A(i,k) where:
%F A348220 A(i,k) = (1/k!)*Integral_(-1,1) Product(u+j, (j, -k+1 .. 0)) du for i=0.
%F A348220 A(i,k) = A(i-1, k-1) + A(i-1, k) for i>0.
%e A348220 Array begins:
%e A348220 2, 0,    1/3,  -1/3,    29/90, -14/45,  1139/3780,   -41/140, ...
%e A348220 2, 2,    1/3,     0,    -1/90,   1/90,   -37/3780,     8/945, ...
%e A348220 2, 4,    7/3,   1/3,    -1/90,      0,      1/756,    -1/756, ...
%e A348220 2, 6,   19/3,   8/3,    29/90,  -1/90,      1/756,         0, ...
%e A348220 2, 8,   37/3,     9,   269/90,  14/45,   -37/3780,     1/756, ...
%e A348220 2, 10,  61/3,  64/3,  1079/90,  33/10,  1139/3780,    -8/945, ...
%e A348220 2, 12,  91/3, 125/3,  2999/90, 688/45, 13613/3780,    41/140, ...
%e A348220 2, 14, 127/3,    72,  6749/90, 875/18,  14281/756,   736/189, ...
%e A348220 2, 16, 169/3, 343/3, 13229/90,  618/5,  51031/756, 17225/756, ...
%e A348220 ...
%t A348220 A[i_ /; i >= 0, k_ /; k >= 0] := A[i, k] = If[i == 0, (1/k!) Integrate[ Product[u+j, {j, -k+1, 0}], {u, -1, 1}], A[i-1, k-1] + A[i-1, k]];
%t A348220 A[_, _] = 0;
%t A348220 Table[A[i-k, k] // Numerator, {i, 0, 10}, {k, 0, i}] // Flatten
%o A348220 (PARI) array(nn) = {my(m = matrix(nn, nn)); for (k=0, nn-1, m[1, k+1] = bestappr(intnum(x=-1, 1, prod(j=1-k, 0, x+j)))/k!; ); for (j=1, nn-1, for (k=0, nn-1, m[j+1, k+1] = if (k>0, m[j,k], 0) + m[j, k+1];);); apply(numerator, m);} \\ _Michel Marcus_, Oct 08 2021
%Y A348220 Cf. A002681, A002682, A348221 (denominators).
%Y A348220 Cf. A003215, A005843, A007395.
%K A348220 frac,sign,tabl
%O A348220 0,1
%A A348220 _Jean-François Alcover_ and _Paul Curtz_, Oct 08 2021