cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348221 Denominators of coefficients for numerical integration of certain differential systems (Array A(i,k) read by ascending antidiagonals).

This page as a plain text file.
%I A348221 #13 Oct 08 2021 19:10:10
%S A348221 1,1,1,1,1,3,1,1,3,3,1,1,3,1,90,1,1,3,3,90,45,1,1,3,3,90,90,3780,1,1,
%T A348221 3,1,90,1,3780,140,1,1,3,3,90,90,756,945,113400,1,1,3,3,90,45,756,756,
%U A348221 16200,14175,1,1,3,1,90,10,3780,1,113400,1400,7484400
%N A348221 Denominators of coefficients for numerical integration of certain differential systems (Array A(i,k) read by ascending antidiagonals).
%C A348221 See A348220.
%D A348221 Paul Curtz, Intégration numérique des systèmes différentiels à conditions initiales. Note no. 12 du Centre de Calcul Scientifique de l'Armement, page 127, 1969.
%F A348221 Denominators of A(i,k) where:
%F A348221 A(i,k) = (1/k!)*Integral_(-1,1) Product(u+j, (j, -k+1 .. 0)) du for i=0.
%F A348221 A(i,k) = A(i-1, k-1) + A(i-1, k) for i>0.
%e A348221 Array begins:
%e A348221 2, 0,    1/3,  -1/3,    29/90, -14/45,  1139/3780,   -41/140, ...
%e A348221 2, 2,    1/3,     0,    -1/90,   1/90,   -37/3780,     8/945, ...
%e A348221 2, 4,    7/3,   1/3,    -1/90,      0,      1/756,    -1/756, ...
%e A348221 2, 6,   19/3,   8/3,    29/90,  -1/90,      1/756,         0, ...
%e A348221 2, 8,   37/3,     9,   269/90,  14/45,   -37/3780,     1/756, ...
%e A348221 2, 10,  61/3,  64/3,  1079/90,  33/10,  1139/3780,    -8/945, ...
%e A348221 2, 12,  91/3, 125/3,  2999/90, 688/45, 13613/3780,    41/140, ...
%e A348221 2, 14, 127/3,    72,  6749/90, 875/18,  14281/756,   736/189, ...
%e A348221 2, 16, 169/3, 343/3, 13229/90,  618/5,  51031/756, 17225/756, ...
%e A348221 ...
%t A348221 A[i_ /; i >= 0, k_ /; k >= 0] := A[i, k] = If[i == 0, (1/k!)  Integrate[ Product[u + j, {j, -k + 1, 0}], {u, -1, 1}], A[i - 1, k - 1] + A[i - 1, k]]; A[_, _] = 0;
%t A348221 Table[A[i - k, k] // Denominator, {i, 0, 10}, {k, 0, i}] // Flatten
%Y A348221 Cf. A002681, A002682, A348220 (numerators).
%K A348221 nonn,tabl,frac
%O A348221 0,6
%A A348221 _Jean-François Alcover_ and _Paul Curtz_, Oct 08 2021