This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A348221 #13 Oct 08 2021 19:10:10 %S A348221 1,1,1,1,1,3,1,1,3,3,1,1,3,1,90,1,1,3,3,90,45,1,1,3,3,90,90,3780,1,1, %T A348221 3,1,90,1,3780,140,1,1,3,3,90,90,756,945,113400,1,1,3,3,90,45,756,756, %U A348221 16200,14175,1,1,3,1,90,10,3780,1,113400,1400,7484400 %N A348221 Denominators of coefficients for numerical integration of certain differential systems (Array A(i,k) read by ascending antidiagonals). %C A348221 See A348220. %D A348221 Paul Curtz, Intégration numérique des systèmes différentiels à conditions initiales. Note no. 12 du Centre de Calcul Scientifique de l'Armement, page 127, 1969. %F A348221 Denominators of A(i,k) where: %F A348221 A(i,k) = (1/k!)*Integral_(-1,1) Product(u+j, (j, -k+1 .. 0)) du for i=0. %F A348221 A(i,k) = A(i-1, k-1) + A(i-1, k) for i>0. %e A348221 Array begins: %e A348221 2, 0, 1/3, -1/3, 29/90, -14/45, 1139/3780, -41/140, ... %e A348221 2, 2, 1/3, 0, -1/90, 1/90, -37/3780, 8/945, ... %e A348221 2, 4, 7/3, 1/3, -1/90, 0, 1/756, -1/756, ... %e A348221 2, 6, 19/3, 8/3, 29/90, -1/90, 1/756, 0, ... %e A348221 2, 8, 37/3, 9, 269/90, 14/45, -37/3780, 1/756, ... %e A348221 2, 10, 61/3, 64/3, 1079/90, 33/10, 1139/3780, -8/945, ... %e A348221 2, 12, 91/3, 125/3, 2999/90, 688/45, 13613/3780, 41/140, ... %e A348221 2, 14, 127/3, 72, 6749/90, 875/18, 14281/756, 736/189, ... %e A348221 2, 16, 169/3, 343/3, 13229/90, 618/5, 51031/756, 17225/756, ... %e A348221 ... %t A348221 A[i_ /; i >= 0, k_ /; k >= 0] := A[i, k] = If[i == 0, (1/k!) Integrate[ Product[u + j, {j, -k + 1, 0}], {u, -1, 1}], A[i - 1, k - 1] + A[i - 1, k]]; A[_, _] = 0; %t A348221 Table[A[i - k, k] // Denominator, {i, 0, 10}, {k, 0, i}] // Flatten %Y A348221 Cf. A002681, A002682, A348220 (numerators). %K A348221 nonn,tabl,frac %O A348221 0,6 %A A348221 _Jean-François Alcover_ and _Paul Curtz_, Oct 08 2021