This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A348226 #31 Nov 22 2021 22:51:07 %S A348226 2,2,43,2,45481,2,65484343,186914543201,50006393431,2 %N A348226 a(n) is the smallest positive integer that when expressed in bases 2 to n, but read in base n, is always prime. %C A348226 a(n)=2 whenever n is prime. %C A348226 Proof: %C A348226 Let n be a prime number. %C A348226 2 expressed in any base larger than 2 is still 2, which is prime. %C A348226 2 expressed in base 2 is 10. And 10 read in base n is 1*n + 0 = n, which is prime. %C A348226 The sequence, even when prime indexes are omitted, is not necessarily increasing. %C A348226 Proof: a(9) > a(10). %e A348226 a(4) = 43, because %e A348226 43 is prime %e A348226 43 in base 3 is 1121 = 1*3^3 + 1*3^2 + 2*3 + 1 and %e A348226 1*4^3 + 1*4^2 + 2*4 + 1 = 89, which is prime; %e A348226 43 in base 2 is 101011 = 1*2^5 + 0*2^4 + 1*2^3 + 0*2^2 + 1*2^1 + 1 and %e A348226 1*4^5 + 0*4^4 + 1*4^3 + 0*4^2 + 1*4^1 + 1 = 1093, which is prime; %e A348226 and 43 is the smallest positive integer with this property. %e A348226 a(10) = 50006393431 %e A348226 = 153060758677_9 %e A348226 = 564447201127_8 %e A348226 = 3420130221331_7 %e A348226 = 34550030320411_6 %e A348226 = 1304403114042211_5 %e A348226 = 232210213100021113_4 %e A348226 = 11210002000211222202121_3 %e A348226 = 101110100100100111010000001001010111_2; %e A348226 if we read these numbers as base-10 numbers, they are all prime. And 50006393431 is the smallest positive integer with this property. %o A348226 (PARI) isok(k, n) = {for (b=2, n, if (! ispseudoprime(fromdigits(digits(k, b), n)), return (0));); return (1);} %o A348226 a(n) = my(k=1); while (!isok(k, n), k++); k; \\ _Michel Marcus_, Oct 09 2021 %o A348226 (Python) %o A348226 from gmpy2 import digits, is_prime, next_prime %o A348226 def A348226(n): # code assumes n <= 63 or n is prime %o A348226 if is_prime(n): %o A348226 return 2 %o A348226 p = 2 %o A348226 while True: %o A348226 for i in range(n-1,1,-1): %o A348226 s = digits(p,i) %o A348226 if not is_prime(int(s,n)): %o A348226 break %o A348226 else: %o A348226 return p %o A348226 p = next_prime(p) # _Chai Wah Wu_, Nov 19 2021 %K A348226 nonn,base,more %O A348226 2,1 %A A348226 _Jesús Bellver Arnau_, Oct 09 2021